The work done by a system kept at constant pressure is given by:

where
p is the pressure

is the final volume

is the initial volume
If we plug the numbers given by the problem into this equation, we find

And since

, we have that the work done is
Answer:
b) It is impossible to tell without knowing the masses.
Explanation:
The temperature change of a substance when it receives/gives off a certain amount of heat Q is given by

where
Q is the amount of heat
m is the mass of the substance
Cs is the specific heat capacity of the substance
In this case, we have a hot piece of aluminum in contact with a cold piece of copper: the amount of heat given off by the aluminum is equal to the amount of heat absorbed by the copper, so Q is the same for the two substances. However, we see that the temperature change of the two substances depends on two other factors: the mass, m, and the specific heat, Cs. So, since we know only the specific heat of the two substances, but not their mass, we can't tell which object will experience the greater temperature change.
Answer: Anthony will be warmer after the game.
Explanation :
Anthony and Maelynn are watching a football game outside on a sunny day. Anthony is wearing a black shirt and Maelynn is wearing a white shirt. Anthony will be warmer after the game. The black color is a good absorber of radiation and a bad reflector.
The black color absorbs heat until a thermal equilibrium is attained. So, it is advisable to wear cotton clothes in summers not dark colored clothes.
Answer:
The centripetal force acting on the child is 39400.56 N.
Explanation:
Given:
Mass of the child is, 
Radius of the barrel is, 
Number of revolutions are, 
Time taken for 10 revolutions is, 
Therefore, the time period of the child is given as:

Now, angular velocity is related to time period as:

Now, centripetal force acting on the child is given as:

Therefore, the centripetal force acting on the child is 39400.56 N.
Answer:
335°C
Explanation:
Heat gained or lost is:
q = m C ΔT
where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.
Heat gained by the water = heat lost by the copper
mw Cw ΔTw = mc Cc ΔTc
The water and copper reach the same final temperature, so:
mw Cw (T - Tw) = mc Cc (Tc - T)
Given:
mw = 390 g
Cw = 4.186 J/g/°C
Tw = 22.6°C
mc = 248 g
Cc = 0.386 J/g/°C
T = 39.9°C
Find: Tc
(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)
Tc = 335