answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DochEvi [55]
2 years ago
10

A 248-g piece of copper is dropped into 390 mL of water at 22.6 °C. The final temperature of the water was measured as 39.9 °C.

Calculate the initial temperature of the piece of copper. Assume that all heat transfer occurs between the copper and the water. Remember, the density of water is 1.0 g/m
Physics
1 answer:
Sedaia [141]2 years ago
7 0

Answer:

335°C

Explanation:

Heat gained or lost is:

q = m C ΔT

where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.

Heat gained by the water = heat lost by the copper

mw Cw ΔTw = mc Cc ΔTc

The water and copper reach the same final temperature, so:

mw Cw (T - Tw) = mc Cc (Tc - T)

Given:

mw = 390 g

Cw = 4.186 J/g/°C

Tw = 22.6°C

mc = 248 g

Cc = 0.386 J/g/°C

T = 39.9°C

Find: Tc

(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)

Tc = 335

You might be interested in
To fully describe the photoelectric effect, scientists must consider which of
erastovalidia [21]

Answer:

D. Light only

Explanation:

This is because photoelectric effect is a phenomenon in which electrically charged particles are emitted from a material when light is incident on it.

The light generates the energy which causes the material to emit electrons.

These electrons are only emitted at certain values of light energy, this thus shows that the light has to be quantized since electrons are not emitted over a range of values of light energy.

Thus, to fully describe the photoelectric effect, only light needs to be quantized.

8 0
2 years ago
what did classical physics predict about electron flow as a result of light shining on a metal surface?
stiv31 [10]
This looks like the photo electric effect ... classical physics reckoned that if you shone an intense enough light beam on a metal you could get electrons ejected from the metal (maybe in analogy to thermionic emission - heat). It sort of "forgot" about the frequency and photon/particle nature of light.
Enter the "photo electric" effect experiment, Einstein's explanation, and the Nobel committee having an excuse to award E a Nobel prize, even though said prize was probably more for relativity.
8 0
2 years ago
A particle traveling in a circular path of radius 300 m has an instantaneous velocity of 30 m/s and its velocity is increasing a
grigory [225]
<h2>Answer:</h2>

(c) 5m/s²

<h2>Explanation:</h2>

Total acceleration (a) of a particle in a circular motion is the vector sum of the radial or centripetal acceleration (a_{C}) of the particle and the tangential acceleration (a_{T}) of the particle and its magnitude can be calculated as follows;

a = \sqrt{(a_{C})^2 + (a_{T})^2}           ---------------------(i)

<em>But;</em>

a_{C} = \frac{v^{2} }{r}      ------------------------------(ii)

Where;

v = instantaneous velocity

r =  radius of the circular path of motion

<em>From the question;</em>

v = 30m/s

r = 300m

(i) First let's calculate the centripetal acceleration by substituting the values above into equation (ii) as follows;

a_{C} = \frac{30^{2} }{300}

a_{C} = \frac{900}{300}

a_{C} = 3m/s²

(ii) From the question, the velocity of the particle is increasing at a constant rate of 4m/s²  and that is the tangential acceleration a_{T}, of the particle. i.e;

a_{T} = 4m/s²

(iii) Now substitute the values of a_{C} and a_{T} into equation (i) as follows;

a = \sqrt{(3)^2 + (4)^2}

a = \sqrt{(9) + (16)}

a = \sqrt{25}

a = 5m/s²

Therefore, the magnitude of its total acceleration a, is 5m/s²

5 0
2 years ago
The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob
givi [52]

Answer:

Charge, Q=1.56\times 10^{-8}\ C

Explanation:

It is given that,

Electric field strength, E = 180000 N/C

Distance from a small object, r = 2.8 cm = 0.028 m

Electric field at a point is given by :

E=\dfrac{kQ}{r^2}

Q is the charge on an object

Q=\dfrac{Er^2}{k}

Q=\dfrac{180000\ N/C\times (0.028\ m)^2}{9\times 10^9\ Nm^2/C^2}

Q=1.56\times 10^{-8}\ C

So, the charge on the object is 1.56\times 10^{-8}\ C. Hence, this is the required solution.

7 0
2 years ago
g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
krok68 [10]

Answer:

r = 4.21 10⁷ m

Explanation:

Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining

            T² = (\frac{4\pi }{G M_s} ) r³             (1)

           

in this case the period of the season is

            T₁ = 93 min (60 s / 1 min) = 5580 s

            r₁ = 410 + 6370 = 6780 km

            r₁ = 6.780 10⁶ m

for the satellite

           T₂ = 24 h (3600 s / 1h) = 86 400 s

if we substitute in equation 1

            T² = K r³

            K = T₁²/r₁³

            K = \frac{ 5580^2}{ (6.780 10^6)^2}

            K = 9.99 10⁻¹⁴ s² / m³

we can replace the satellite values

            r³ = T² / K

            r³ = 86400² / 9.99 10⁻¹⁴

            r = ∛(7.4724 10²²)

            r = 4.21 10⁷ m

this distance is from the center of the earth

7 0
2 years ago
Other questions:
  • Macy always thought there were only a few hair colors: blond, brown, and black. However, when she actually began looking around,
    12·2 answers
  • If the temperature is lowered from 60 °c to 30 °c, the volume of a fixed amount of gas will be one half the original volume. if
    11·1 answer
  • Some hydrogen gas is enclosed within a chamber being held at 200∘c with a volume of 0.0250 m3. the chamber is fitted with a mova
    9·1 answer
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
    8·2 answers
  • Jin walked 4 km on a straight path to get to the sandwich shop. He traveled 30° south of east.
    10·2 answers
  • A weatherman carried an aneroid barometer from the ground floor to his office atop the Sears Tower in Chicago. On the level grou
    10·1 answer
  • A small glass bead charged to 5.0 nCnC is in the plane that bisects a thin, uniformly charged, 10-cmcm-long glass rod and is 4.0
    10·1 answer
  • What is not a similarity between mars and earth today?
    15·1 answer
  • A 48.0-kg astronaut is in space, far from any objects that would exert a significant gravitational force on him. He would like t
    9·1 answer
  • Concerned with citizen complaints of price gouging during past hurricanes, Florida's state government passes a law setting a pri
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!