Answer:
The stars are moving away from us.
Explanation:
The observed wavelengths of hydrogen transition for stars A and B (660.0 nm and 666 nm respectively) are greater than that observed in the laboratory (656.2 nm). The observed long wavelengths for the stars means that the light from the stars is red-shifted.
According to the Doppler effect, red-shifted light means that the source is moving a way from the observer; therefore, we arrive at the conclusion that the stars A and B are moving away from us.
Answer:
fcosθ + Fbcosθ =Wtanθ
Explanation:
Consider the diagram shown in attachment
fx= fcosθ (fx: component of friction force in x-direction ; f: frictional force)
Fbx= Fbcosθ ( Fbx: component of braking force in x-direction ; Fb: braking force)
Wx= Wtanθ (Wx: component of weight in x-direction ; W: Weight of semi)
sum of x-direction forces = 0
fx+ Fbx=Wx
fcosθ + Fbcosθ =Wtanθ
Answer: -2.5
Explanation:
1/2(-5)= -2.5
-2.5(1)= -2.5
Got it right in Khan Academy. You’re welcome.
<h2>
Answer: a.The mirrors and eyepiece of a large telescope are spring-loaded to allow them to return quickly to a known position. </h2>
Explanation:
Adaptive optics is a method used in several astronomical observatories to counteract in real time the effects of the Earth's atmosphere on the formation of astronomical images.
This is done through the insertion into the optical path of the telescope of sophisticated deformable mirrors supported by a set of computationally controlled actuators. Thus obtaining clear images despite the effects of atmospheric turbulence that cause the unwanted distortion.
It should be noted that with this technique it is also necessary to have a moderately bright reference star that is very close to the object to be observed and studied. However, it is not always possible to find such stars, so a powerful laser beam is used to point towards the Earth's upper atmosphere and create artificial stars.