answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
2 years ago
14

Given a die, would it be more likely to get a single 6 in six rolls, at least two 6s in twelve rolls, or at least one-hundred 6s

in six-hundred rolls?
Physics
1 answer:
vichka [17]2 years ago
4 0

Answer:

Explanation:

In first case we are interested in one time 6 in six rolls

Thus probability = number of chances required/Total chances

= 1/6

Similarly in the second case probability = 2/12 = 1/6

In the same way in last case probability = 100/600 = 1/6

The probability is the same . Thus all the cases has equal chances  

You might be interested in
A person kicks a ball, giving it an initial velocity of 20.0 m/s up a wooden ramp. When the ball reaches the top, it becomes air
Alex Ar [27]

Answer:

(a) Height is 4.47 m

(b) Height is 4.37 m

Solution:

As per the question:

Initial velocity of teh ball, v_{o} = 20.0 m/s

Angle made by the ramp, \theta = 22.0^{\circ}

Distance traveled by the ball on the ramp, d = 5.00 m

Now,

(a) At any point on the projectile before attaining maximum height, the velocity can be given by the eqn-3 of motion:

v^{2} = v_{o}^{2} - 2gH

where

H = dsin22^{\circ} = 5sin22^{\circ}

g = 9.8 m/s^{2}

v^{2} = 20^{2} - 2\times 9.8\times 5sin22^{\circ}

v = \sqrt{400 - 19.6\times 5sin22^{\circ}} = 19.06 m/s

Now, maximum height attained is given by:

h = \frac{(vsin\theta)^{2}}{2g}

h = \frac{(19sin(22^{\circ}))^{2}}{2\times 9.8} = 2.60 m

Height from the ground = 5sin22^{circ} + 2.86 = 1.87 + 2.60 = 4.47m

(b) now, considering the coefficient of friction bhetween ramp and the ball, \mu = 0.150:

velocity can be given by the eqn-3 of motion:

v^{2} = v_{o}^{2} - 2gH - \mu gd

v^{2} = 20^{2} - 2\times 9.8\times 5sin22^{\circ} - 0.150\times 9.8\times 5

v = \sqrt{400 - 19.6\times 5sin22^{\circ} - 0.150\times 9.8\times 5} = 18.7 m/s

Now, maximum height attained is given by:

h = \frac{(vsin\theta)^{2}}{2g}

h = \frac{(18.7sin(22^{\circ}))^{2}}{2\times 9.8} = 2.50 m

Height from the ground = 5sin22^{circ} + 2.86 = 1.87 + 2.50 = 4.37 m

6 0
2 years ago
The drawing shows the top view of a door that is 1.68 m wide. two forces are applied to the door as indicated. what is the magni
jekas [21]
First, torque is equal to force times the distance. for the first force that is applied, the torque is zero because is applied at the hinge. so the net torque:
t = ( 12 N ) ( 0 m ) ( cos 30 ) + ( 12 N ) ( 1.68 m ) cos 45
t = 14.26 Nm is the torque with respect to the hinge
8 0
2 years ago
A bag of potato chips contains 2.00 L of air when it is sealed at sea level at a pressure of 1.00 atm and a temperature of 20.0°
Genrish500 [490]

Answer:

The volume at mountains is 2.766 L.

Explanation:

Given that,

Volume V_{1} = 2.00\ L

Pressure P_{1}= 1.00\ atm

Pressure P_{2}= 70.0\ kPa

Temperature T_{1}= 20.0°C = 293\ K

Temperature T_{2}= 7.00°C = 280\ K

We need to calculate the volume at mountains

Using  gas law

\dfrac{PV}{T}=\ Constant

For both temperature,

\dfrac{P_{1}V_{1}}{T_{1}}=\dfrac{P_{2}V_{2}}{T_{2}}

Put the value into the formula

\dfrac{101.325\times2}{293}=\dfrac{70\times V_{2}}{280}

V_{2}=\dfrac{101.325\times2\times280}{293\times70}

V_{2}=2.766\ litre

Hence, The volume at mountains is 2.766 L.

5 0
2 years ago
Two vertical springs have identical spring constants, but one has a ball of mass m hanging from it and the other has a ball of m
OverLord2011 [107]

To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,

The energy of the system having mass m is,

E_m = \frac{1}{2} m\omega_1^2A_1^2

The energy of the system having mass 2m is,

E_{2m} = \frac{1}{2} (2m)\omega_1^2A_1^2

For the two expressions mentioned above remember that the variables mean

m = mass

\omega =Angular velocity

A = Amplitude

The energies of the two system are same then,

E_m = E_{2m}

\frac{1}{2} m\omega_1^2A_1^2=\frac{1}{2} (2m)\omega_1^2A_1^2

\frac{A_1^2}{A_2^2} = \frac{2\omega_2^2}{\omega_1^2}

Remember that

k = m\omega^2 \rightarrow \omega^2 = k/m

Replacing this value we have then

\frac{A_1}{A_2} = \sqrt{\frac{2(k/m_2)}{(k/m_1)^2}}

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{m_1}{m_1}}

But the value of the mass was previously given, then

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{m}{2m}}

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{1}{2}}

\frac{A_1}{A_2} = 1

Therefore the ratio of the oscillation amplitudes it is the same.

5 0
2 years ago
The distance of the earth from the sun is 93 000 000 miles. if there are 3.15 × 107 s in one year, find the speed of the earth i
faltersainse [42]

The angular velocity of the orbit about the sun is:

w = 1 rev / year = 1 rev / 3.15 × 10^7 s

 

Now in 1 rev there is 360° or 2π rad, therefore:

w = 2π rad / 3.15 × 10^7 s

 

To convert in linear velocity, multiply the rad /s by the radius:

v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles

<span>v = 18.55 miles / s = 29.85 km / s</span>

5 0
2 years ago
Read 2 more answers
Other questions:
  • What is the unresolved problem that is facing scientists on the island of Guam?
    7·1 answer
  • Tyler has learned that potential energy is energy stored. Tyler's teacher asks the students to come up with a demonstration of p
    7·2 answers
  • In a closed system, the loss of momentum of one object_____ the gain in momentum of another object.
    9·1 answer
  • A bowling ball has a mass of 5.5 kg and a radius of 12.0 cm. It is released so that
    7·1 answer
  • Compare the density, weight, mass, and volume of a pound of gold to a pound of iron on the surface of Earth.
    11·1 answer
  • Through how many volts of potential difference must an electron, initially at rest, be accelerated to achieve a wave length of 0
    13·1 answer
  • A rifle, which has a mass of 5.50 kg., is used to fire a bullet, which has a massof m = 65.0 grams., at a "ballistics pendulum".
    6·1 answer
  • Students repeat the experiment but replace block X and block Y with block W and block Z , as shown in Figure 3. Block W and bloc
    11·1 answer
  • An aircraft acceleration from 100m/s to 300m/s in 100 s what is acceleration​
    15·1 answer
  • A simple arrangement by means of which e.m.f,s. are compared is known
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!