answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
2 years ago
8

A typical reaction time to get your foot on the brake in your car is 0.2 second. If you are traveling at a speed of 60 mph (88 f

t/s or 26.8 m/s), what distance will your car travel during this reaction time? Express your answers in miles, feet and meters.
Physics
2 answers:
Nataly [62]2 years ago
6 0

Answer:

distance in meters= 5.36

distance in feet= 17.6

distance in miles= 3.33*10⁻³

Explanation:

The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three. Remember that proportionality is a constant relationship or ratio between different magnitudes.

If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other) , the direct rule of three must be applied. To solve a direct rule of three, the following formula must be followed:

a ⇒ b

c ⇒ x

Then:

x=\frac{c*b}{a}

Then the rule of three can be applied in the following way, taking into account the speed of 26.8 \frac{m}{s}: if in 1 second you travel 26.8 meters, in the reaction time 0.2 seconds what is the distance traveled?

distance in meters=\frac{0.2 seconds*26.8 meters}{1 second}

<u><em>distance in meters= 5.36</em></u>

Next, the rule of three can be applied in the following way, taking into account the speed of 88 \frac{ft}{s}: if in 1 second you travel 88 feet, in the reaction time 0.2 seconds what is the distance traveled?

distance in feet=\frac{0.2seconds*88 feet}{1 second}

<u><em>distance in feet= 17.6</em></u>

Finally, taking into account that 1 hour is 3600 seconds, the rule of three can be applied in the following way, taking into account the speed of 60 mph: if in 3600 seconds you travel 60 miles, in the reaction time 0.2 seconds what is the distance traveled?

distance in miles=\frac{0.2 seconds*60miles}{3600 seconds}

<u><em>distance in miles= 3.33*10⁻³</em></u>

katrin [286]2 years ago
5 0

Explanation:

Not enough information. It really depends on the technical details of the car ( the data provided is offering just the human factor of the reaction, not the time for getting the impulse through when using the breaks

You might be interested in
A boat traveled 280 miles downstream and back. The trip downstream took 7 hours. Trip back took 14 hours. What is the speed of t
avanturin [10]
Assuming 280 miles is the total distance travelled:
Let b = boat speed in still water
Let c = current speed.
For the downstream trip the speed is b + c. In 7 hours at the speed of (b + c) mph the boat travels 140 miles.
7(b + c) = 140 .............(1)
For the upstream trip the speed is b - c. In 14 hours at the speed of (b - c) mph the boat travels 140 miles.
14(b - c) = 140 ............(2)
The left hand sides of equations (1) and (2) are equal. Therefore we can write
7b + 7c = 14b - 14c ...........(3)
Rearranging equation (3) we get
21c = 7b
c = b/3 .......................(4)
The value for c obtained in equation (4) should now be substituted into equation (1) which can then be solved to find the value of b.
7 0
2 years ago
Read 2 more answers
Which factors could be potential sources of error in the experiment? check all that apply.
Vadim26 [7]

(A)energy lost in the lever due to friction

(C) visual estimation of height of the beanbag

(E)position of the fulcrum for the lever affecting transfer of energy

6 0
2 years ago
Read 2 more answers
Jake uses a fire extinguisher to put out a small fire. When he squeezes the handle, the flame rettardant is released from the ex
Tpy6a [65]
Can you attach a picture of the actual problem?
7 0
2 years ago
Read 2 more answers
Io, a satellite of Jupiter, is the most volcanically active moon or planet in the solar system. It has volcanoes that send plume
Mamont248 [21]

Answer:

1331.84 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity = 0

s = Displacement = 490 km

a = Acceleration

g = Acceleration due to gravity = 1.81 m/s² = a

From equation of linear motion

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -1.81\times 490000}\\\Rightarrow u=1331.84\ m/s

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km

3 0
2 years ago
Read 2 more answers
A block of mass 2.00 kg is initially at rest at x=0 on a slippery horizontal surface for which there is no friction. Starting at
Allisa [31]

Answer:

   x = 1,185 m ,     t = 4/3 s ,  F = - 4 N

Explanation:

For this exercise we use Newton's second law

         F = m a = m dv /dt

        β - α t = m dv / dt

        dv = (β – α t) dt

     

We integrate

        v = β t - ½ α t²

We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t

       v-v₀ = β t - ½ α t²

the farthest point of the body is when v = v₀ = 0

  0 = β t - ½ α t²

  t = 2 β / α

  t = 2 4/6

  t = 4/3 s

Let's find the distance at this time

   v = dx / dt

   dx / dt = v₀ + β t - ½ α t2

   dx = (v₀ + β t - ½ α t2) dt

We integrate

   x = v₀ t + ½ β t - ½ 1/3 α t³

   x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³

The body comes out of rest

    x = 3.5556 - 2.37

    x = 1,185 m

The value of force is

    F = β - α t

    F = 4 - 6 4/3

   F = - 4 N

8 0
2 years ago
Other questions:
  • When a light wave enters into a medium of different optical density,
    6·1 answer
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • "I know how many electrons the atom has, and I know how many protons it has, but I don't know whether or not it is neutral," a f
    12·1 answer
  • A merry-go-round with a a radius of R = 1.63 m and moment of inertia I = 196 kg-m2 is spinning with an initial angular speed of
    5·1 answer
  • A glider is gliding through the air at a height of 416 meters with a speed of 45.2 m/s. The glider dives to a height of 278 mete
    15·1 answer
  • A particle has a velocity of v→(t)=5.0ti^+t2j^−2.0t3k^m/s.
    7·1 answer
  • An imaginary cubical surface of side L has its edges parallel to the x-, y- and z-axes, one corner at the point x = 0, y = 0, z
    9·1 answer
  • A solid conducting sphere of radius 5.00 cmcarries a net charge. To find the value of the charge, you measure the potential diff
    9·1 answer
  • A fundraising company agrees to donate an extra $75 for every $100 the school raises through selling cookies. Part A: What is th
    15·1 answer
  • A ball of mass 0.12kg is hit by a tennis player. The velocity of the ball changes from 0m/ s to 5.0m/s in 0.60s. What is the ave
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!