answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frosja888 [35]
2 years ago
14

What accounts for the two precipitation peaks in mbandaka?

Physics
1 answer:
faust18 [17]2 years ago
7 0

The two precipitation peaks in Mbandaka during March to April and September to November is due to the intertropical convergence zone.

Intertropical convergence zone is a narrow zone located near the equator. It is where the northern and southern air masses intersect which results to low atmospheric pressure. Due to the intertropical convergence zone’s meeting of air masses, often times the air pressure are lower which will results to colder air, or even rainfall during the period of March to April, and most especially September to November in Mbandaka.

<span>Since Mbandaka is located at the cented of Tumba-Ngiri-Maindombe area, which is named as a Wetland of International importance, there is really a bigger chance that this place experience above 60mm precipitation in a year, temperatures averaging from 23 – 26 degrees Celsius.</span>

You might be interested in
Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
HACTEHA [7]
Lydia is an example of an optimist. Optimists always look at the positive side of a particular situation. They believe in a positive result. Optimist always see "the bright side" as opposed to the pessimist. The word optimism comes from latin word "optimum" which means "the best".

5 0
2 years ago
Read 2 more answers
James gently releases a ball at the top of a slope, but does not push the ball. The ball rolls down the slope. Which force cause
Rzqust [24]

D. Gravitational force.

5 0
2 years ago
Read 2 more answers
The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change
mihalych1998 [28]

Answer:

a) 1.2*10^-7 m

b) 1.0*10^-7 m

c) 9.7*10^-8 m

d) ultraviolet region

Explanation:

To find the different wavelengths you use the following formula:

\frac{1}{\lambda}=R_H(1-\frac{1}{n^2})

RH: Rydberg constant = 1.097 x 10^7 m^−1.

(a) n=2

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(2)^2})=8227500m^{-1}\\\\\lambda=1.2*10^{-7}m

(b)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(3)^2})=9751111,1m^{-1}\\\\\lambda=1.0*10^{-7}m

(c)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(4)^2})=10284375m^{-1}\\\\\lambda=9.7*10^{-8}m

(d) The three lines belong to the ultraviolet region.

8 0
2 years ago
The most widely accepted model for the origin of the moon involves _____. the formation of the moon from dust and gas when earth
Scilla [17]
The most widely accepted<span> theory is that the </span>Moon<span> was formed when a Mars-sized object slammed into the Earth, billions of years ago. This collision turned the newly formed Earth into a molten ball of rock again, and ejected material into orbit.</span>
4 0
2 years ago
Read 2 more answers
You testify as an expert witness in a case involving an accident in which car A slid into the rear of car B, which was stopped a
bekas [8.4K]

Answer:

A) 12.08 m/s

B) 19.39 m/s

Explanation:

A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:

mg(sinθ) – F_k = ma

Where; F_k is frictional force due to kinetic friction given by the formula;

F_k = (μ_k) × F_n

F_n is normal force given by mgcosθ

Thus;

F_k = μ_k(mg cosθ)

We now have;

mg(sinθ) – μ_k(mg cosθ) = ma

Dividing through by m to get;

g(sinθ) – μ_k(g cosθ) = a

a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)

a = -3.71 m/s²

We are told that distance d = 24.0 m and v_o = 18 m/s

Using newton's 3rd equation of motion, we have;

v = √(v_o² + 2ad)

v = √(18² + (2 × -3.71 × 24))

v = 12.08 m/s

B) Now, μ_k = 0.10

Thus;

a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)

a = 1.08 m/s²

Using newton's 3rd equation of motion, we have;

v = √(v_o + 2ad)

v = √(18² + (2 × 1.08 × 24))

v = 19.39 m/s

6 0
2 years ago
Other questions:
  • A taxi starts from Monument Circle and travels 5 kilometers to the east for 5 minutes. Then it travels 10 kilometers to the sout
    6·2 answers
  • The formula for calculating power is work divided by time (power = work ÷ time). What are two ways of stating the same relations
    8·2 answers
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • The deepest point of the pacific ocean is 11,033 m, in the mariana trench. what is the gauge pressure in the water at that point
    6·1 answer
  • In a laboratory test of tolerance for high acceleration, a pilot is swung in a circle 13.0 m in diameter. It is found that the p
    6·1 answer
  • An object moves in a circle of radius R at constant speed with a period T. If you want to change only the period in order to cut
    8·1 answer
  • Two objects attract each other gravitationally. If the mass of each object doubles, how does the gravitational force between the
    5·1 answer
  • Suppose an acorn with a mass of 3.17 g falls off a tree. At a particular moment during the fall, the acorn has a kinetic energy
    10·1 answer
  • Picture a long, straight corridor running east-west, with a water fountain located somewhere along it. Starting from the west en
    12·1 answer
  • A large semi-truck, with mass 31x crashes into a small sedan with mass x . If the semi-truck exerts a force F on the sedan, what
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!