The first law of thermodynamics says that the variation of internal energy of a system is given by:

where Q is the heat delivered by the system, while W is the work done on the system.
We must be careful with the signs here. The sign convention generally used is:
Q positive = Q absorbed by the system
Q negative = Q delivered by the system
W positive = W done on the system
W negative = W done by the system
So, in our problem, the heat is negative because it is releaed by the system:
Q=-1275 J
while the work is positive because it is performed by the surrounding on the system:
W=+855 J
So, the variation of internal energy of the system is
Answer:
On the other hand, Florida's Gulf Coast experiences the greatest number of thunderstorms out of any U.S. location. These types of storms occur on average 130 days per year in Florida.
Answer:
980 kJ
Explanation:
Work = change in energy
W = mgh
W = (1000 kg/m³ × 5.0 m³) (9.8 m/s²) (20 m)
W = 980,000 J
W = 980 kJ
The pump does 980 kJ of work.
Answer:
The angular velocity of Ball A will be greater than the angular velocity of Ball B when they reach the top of the hill.
Explanation:
Angular velocity can be defined as how fast an object rotates relative to a given point or frame of reference.
The question said the hill encountered by Ball A is frictionless, so Ball A will continue to rotate at the same rate it started with even when it reached the top of the hill.
Ball B on the other hand rolls without slipping over its hill, i.e there's friction to slow down its rotational motion which thus reduces how fast Ball B will rotate at the top of the hill
Answer:
d = 3.54 x 10⁴ Km
Explanation:
Given,
The distance between the two objects, r = 2.5 x 10⁴ Km
The gravitational force between them, F = 580 N
The gravitational force between the two objects is given by the formula
F = GMm/r² newton
When the gravitational force becomes half, then the distance between them becomes
Let us multiply the above equation by 1/2 on both sides
( 1/2) F = (1/2) GMm/r²
= GMm/2r²
= GMm/(√2r)²
Therefore, the distance becomes √2d, when the gravitational force between them becomes half
d = √2r = √2 x 2.5 x 10⁴ Km
= 3.54 x 10⁴ Km
Hence, the two objects should be kept at a distance, d = 3.54 x 10⁴ Km so that the gravitational force becomes half.