Answer:
(a) Magnetic moment will be 
(b) Torque will be 
Explanation:
We have given dimension of the rectangular 5.4 cm × 8.5 cm
So area of the rectangular coil 
Current is given as 
Number of turns N = 25
(A) We know that magnetic moment is given by 
(b) Magnetic field is given as B = 0.350 T
We know that torque is given by 
Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
The angular velocity of the orbit about the sun is:
w = 1 rev / year = 1 rev / 3.15 × 10^7 s
Now in 1 rev there is 360° or 2π rad, therefore:
w = 2π rad / 3.15 × 10^7 s
To convert in linear velocity, multiply the rad /s by the
radius:
v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles
<span>v = 18.55 miles / s = 29.85 km / s</span>
Centripetal force <span>a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving. It is calculated by the expression:
F = mv^2/r
where m is the mass, v is the velocity and r is the radius.
F = 7.26(31.95)^2 / (1.215) = 6100 N</span>