answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
2 years ago
14

A container contains 200g of water at initial temperature of 30°C. An iron nail of mass 200g at temperature of 50°C is immersed

in the water. What is the final water temperature? State the assumptions you need to make in your calculations.
[Given the value of specific heat capacity of water is 4200 J kg^-1 °C^-1 and that of iron is
450 J kg^-1 °C^-1]​
Physics
1 answer:
andriy [413]2 years ago
4 0

Answer:

The final temperature is 31.94°

Explanation:

The mass of the water in the container m₁ = 200 g = 0.2 kg

The initial temperature of the water,  T₁₁ = 30°C

The mass of the iron, m₂ = 200 g = 0.2 kg

The temperature of the iron T₂₁= 50°C is immersed in the water,

The specific heat capacity of the water, c₁ = 4200 J/(kg·°C)

The specific heat capacity of the iron, c₂ = 450 J/(kg·°C)

Heat capacity relation is given by the formula;

Heat capacity Q = Mass, m × Specific heat capacity, c × Temperature change, (T₂ - T₁)

Given that energy can neither be created nor destroyed, and with the assumption that all the heat lost by the nail is gained by the water we have;

Heat lost by iron nail = Heat gained by the  water

m₁ × c₁ × (T₂ - T₁₁) = m₂ × c₂ × (T₂₁ - T₂)

Where, T₂ is the final temperature

0.2 kg × 4200 J/(kg·°C) × (T₂ - 30) = 0.2 kg × 450 J/(kg·°C) × (50° - T₂)

840·T₂ - 25200 = 4500 - 90·T₂

4500 + 25200 = 840·T₂ + 90·T₂

29700 = 930·T₂

T₂ = 29700/930 = 31.94°.

The final temperature = 31.94°.

You might be interested in
A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
Butoxors [25]

Answer:

292796435 seconds ≈ 300 million seconds

Explanation:

First of all, the speed of the car is 121km/h = 33.6111 m/s

The radius of the planet is given to be 7380 km = 7380000 m

From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec

If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have

w(vehicle) = 9.78 x w(planet)

w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec

To find the period of the planet's rotation; we use the equation

w(planet) = 2π÷T

Where w(planet) is the angular velocity of the planet and T is the period

From the equation T = 2π÷w = 2×(22/7) ÷  4.66 x 10⁻⁷ = 292796435 seconds

Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds

8 0
2 years ago
De Vico Comet orbits the Sun every 74.0 years and has an orbital eccentricity of 0.96. Find the comet's average distance from th
Debora [2.8K]

Answer: The comet's average distance from the sun is 17.6AU

Explanation:

From Kepler's 3rd Law, P^2=a^3

Where P is period in years

and a is length of semi-major axis or the average distance of the comet to the sun.

Given the orbital period to be 74 years

74^2 =a^3

5476 = a^3

Cube root of 5476 =a

17.626 = a

Approximately a= 17.6 AU

5 0
2 years ago
A 225 kg red bumper car is moving at 3.0 m/s. It hits a stationary 180 kg blue bumper car. The red and blue bumper cars combine
Alex Ar [27]

Given


m1(mass of red bumper): 225 Kg


m2 (mass of blue bumper): 180 Kg


m3(mass of green bumper):150 Kg


v1 (velocity of red bumper): 3.0 m/s


v2 (final velocity of the combined bumpers): ?




The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:


Pa= Pb


Where Pa is the momentum before collision and Pb is the momentum after collision.


Now applying this law for the above problem we get


Momentum before collision= momentum after collision.


Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s


Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2

=555v2

Now we know that Momentum before collision= momentum after collision.


Hence we get


1215 = 555 v2


v2 = 2.188 m/s


Hence the velocity of the combined bumper cars is 2.188 m/s

4 0
1 year ago
Read 2 more answers
Describe the energy transformations that take place when a skier starts skiing down a hill but after a time is brought to rest b
Andrews [41]
<span>The skier will transform their gravitational energy into mostly kinetic energy (with a minor amount transformed into heat from the friction of the skis across the snow and air friction). Once the skier hits the snowdrift, their kinetic energy is transferred into the snow which moves when they strike it due to the kinetic energy that is now in the snow. Along with again a minor amount of heat energy transferred as they move through the snowdrift.</span>
6 0
2 years ago
A physics student with too much free time drops a watermelon from a roof of a building, hears the sound of the watermelon going
tatiyna

Answer:

28.6260196842 m

Explanation:

Let h be the height of the building

t = Time taken by the watermelon to fall to the ground

Time taken to hear the sound is 2.5 seconds

Time taken by the sound to travel the height of the cliff = 2.5-t

Speed of sound in air = 340 m/s

For the watermelon falling

s=ut+\frac{1}{2}at^2\\\Rightarrow h=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow h=\frac{1}{2}\times 9.81\times t^2

For the sound

Distance = Speed × Time

\text{Distance}=340\times (2.5-t)

Here, distance traveled by the stone and sound is equal

\frac{1}{2}\times 9.81\times t^2=340\times (2.5-t)\\\Rightarrow 4.905t^2=340\times (2.5-t)\\\Rightarrow t^2=\frac{340}{4.905}(2.5-t)\\\Rightarrow t^2+69.3170234455t-173.292558614=0

t=\frac{-69.31702\dots +\sqrt{69.31702\dots ^2-4\cdot \:1\cdot \left(-173.29255\dots \right)}}{2\cdot \:1},\:t=\frac{-69.31702\dots -\sqrt{69.31702\dots ^2-4\cdot \:1\cdot \left(-173.29255\dots \right)}}{2\cdot \:1}\\\Rightarrow t=2.4158\ s\ or\ -71\ seconds

The time taken to fall down is 2.4158 seconds

h=\frac{1}{2}\times 9.81\times 2.4158^2=28.6260196842\ m

Height of the buidling is 28.6260196842 m

7 0
2 years ago
Other questions:
  • Taro stated that when someone hits a golf ball with a club, the amount of energy the ball has changes, the amount of energy that
    11·2 answers
  • Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
    9·1 answer
  • One of the dangers of tornados and hurricanes is the rapid drop in air pressure that is associated with such storms. Assume that
    6·1 answer
  • In Part 6.2.2, you will determine the wavelength of the laser by shining the laser beam on a "diffraction grating", a set of reg
    14·1 answer
  • An agriculturalist working with Australian pine trees wanted to investigate the relationship between the age and the height of t
    9·1 answer
  • A 480 g peregrine falcon reaches a speed of 69 m/s in a vertical dive called a stoop. If we assume that the falcon speeds up und
    7·1 answer
  • A bodybuilder lifts a 10 N weight a distance of 2.5 m. <br> How much energy has the weight gained?
    12·1 answer
  • The electric potential in a particular region of space varies only as a function of y-position and is given by the function V(y)
    5·1 answer
  • Suppose we have a radar dish that generates a strong signal that travels out to hit an asteroid 10^9 kilometres away.
    14·1 answer
  • A block is projected with speed v across a horizontal surface and slides to a stop due to friction. The same block is then proje
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!