answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
2 years ago
14

A container contains 200g of water at initial temperature of 30°C. An iron nail of mass 200g at temperature of 50°C is immersed

in the water. What is the final water temperature? State the assumptions you need to make in your calculations.
[Given the value of specific heat capacity of water is 4200 J kg^-1 °C^-1 and that of iron is
450 J kg^-1 °C^-1]​
Physics
1 answer:
andriy [413]2 years ago
4 0

Answer:

The final temperature is 31.94°

Explanation:

The mass of the water in the container m₁ = 200 g = 0.2 kg

The initial temperature of the water,  T₁₁ = 30°C

The mass of the iron, m₂ = 200 g = 0.2 kg

The temperature of the iron T₂₁= 50°C is immersed in the water,

The specific heat capacity of the water, c₁ = 4200 J/(kg·°C)

The specific heat capacity of the iron, c₂ = 450 J/(kg·°C)

Heat capacity relation is given by the formula;

Heat capacity Q = Mass, m × Specific heat capacity, c × Temperature change, (T₂ - T₁)

Given that energy can neither be created nor destroyed, and with the assumption that all the heat lost by the nail is gained by the water we have;

Heat lost by iron nail = Heat gained by the  water

m₁ × c₁ × (T₂ - T₁₁) = m₂ × c₂ × (T₂₁ - T₂)

Where, T₂ is the final temperature

0.2 kg × 4200 J/(kg·°C) × (T₂ - 30) = 0.2 kg × 450 J/(kg·°C) × (50° - T₂)

840·T₂ - 25200 = 4500 - 90·T₂

4500 + 25200 = 840·T₂ + 90·T₂

29700 = 930·T₂

T₂ = 29700/930 = 31.94°.

The final temperature = 31.94°.

You might be interested in
What resistance must be connected in parallel with a 633-Ω resistor to produce an equivalent resistance of 205 Ω?
alukav5142 [94]

Answer:

303 Ω

Explanation:

Given

Represent the resistors with R1, R2 and RT

R1 = 633

RT = 205

Required

Determine R2

Since it's a parallel connection, it can be solved using.

1/Rt = 1/R1 + 1/R2

Substitute values for R1 and RT

1/205 = 1/633 + 1/R2

Collect Like Terms

1/R2 = 1/205 - 1/633

Take LCM

1/R2 = (633 - 205)/(205 * 633)

1/R2 = 428/129765

Take reciprocal of both sides

R2 = 129765/428

R2 = 303 --- approximated

5 0
2 years ago
A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
Studentka2010 [4]

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration (g=9.8 m/s^2) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

v=18.9 m/s

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

v_y^2 - u_y^2 = 2ah (1)

where

u_y = 16.4 m/s is the initial vertical velocity

v_y is the vertical velocity at height h

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, v_y = 0, so we can use the equation to find the maximum height

h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m

So, at half of the maximum height,

h = \frac{13.7}{2}=6.9 m

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s

And so, the speed of the stone at half of the maximum height is

v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

v_1 = 18.9 m/s

while the speed at half of the maximum height (part b) is

v_2 = 22.2 m/s

So the difference is

\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s

And so, in percentage,

\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%

So, the stone in part (b) is moving 17.4% faster than in part (a).

4 0
2 years ago
Which statement about electrons and atomic orbitals is NOT true?
balandron [24]

<em>An electron has the same amount of energy in all orbitals  is not true</em>

\boxed{\boxed{\bold{Further~explanation}}}

In an atom there are levels of energy in the skin and sub skin.

  • This energy level is expressed in the form of electron configurations.

Writing electron configurations starts from the lowest to the highest sub-shell energy level.

So electrons that occupy the orbitals in the lowest sub-skin have the lowest energy level

  • In the principle of Pauli's prohibition it was stated that there are no two electrons in one atom that can have the same four quantum numbers.

So suppose that there are two electrons occupying one orbital can have the same main quantum number (n), azimuth (l) and magnetic (m), then the last quantum number that is the quantum spin number (s) must be different.

So that the two electrons are different from just the quantum spin number, even though the other quantum numbers are the same.

So in one orbital only a maximum of 2 electrons is occupied, because if there is a third electron, this third electron will have the same quantum spin number as the previous electron

  • The electron cloud is a visual representation of the location of electrons in an atom.

Orbital is the place around the nucleus where electrons may be found

Electron clouds show the state of electrons in their orbitals

So electron clouds can show the condition of all orbitals in an atom

The lowest energy level of an electron occupies a sub-skin of 1s which has only one orbital

Charging electrons in the sub skin uses the following sequence:

1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁶, 5s², 4d¹⁰, 5p⁶, 6s², etc.

Statement about electrons and atomic orbitals is not true is An electron has the same amount of energy in all orbitals

the electron configuration for barium (Ba) in noble-gas notation brainly.com/question/11147367

the formation of a bond.

brainly.com/question/11311275

quantum number

brainly.com/question/2292596

Keywords: the electron configuration, orbitals, atoms, energy, skin, sub skin, electron clouds

8 0
2 years ago
Read 2 more answers
What is the gravitational force of attraction between a planet and a 17-kilogram mass that is falling freely toward the surface
PolarNik [594]

Answer:

a. 150 N

Explanation:

Gravitational Force: This is the force that act on a body under gravity.

The gravitational force always attract every object on or near the earth's surface. The earth therefore, exerts an attractive force on every object on or near it.

The S.I unit of gravitational force is Newton(N).

Mathematically, gravitational force of attraction is expressed as

(i) F = GmM/r² ........................ Equation 1 ( when it involves two object of different masses on the earth)

(ii) F = mg ............................... Equation 2 ( when it involves one mass and the gravitational field).

Given: m = 17 kg, g = 8.8 m/s²

Substituting into equation 2,

F = 17(8.8)

F = 149.6 N

F ≈ 150 N.

Thus the gravitational force = 150 N

The correct option is a. 150 N

5 0
2 years ago
A rigid tank contains nitrogen gas at 227 °C and 100 kPa gage. The gas is heated until the gage pressure reads 250 kPa. If the a
aleksley [76]

Answer:

 T₂ =602  °C

Explanation:

Given that

T₁ = 227°C =227+273 K

T₁ =500 k

Gauge pressure at condition 1 given = 100 KPa

The absolute pressure at condition 1 will be

P₁ = 100 + 100 KPa

P₁ =200 KPa

Gauge pressure at condition 2 given = 250 KPa

The absolute pressure at condition 2 will be

P₂ = 250 + 100 KPa

P₂ =350 KPa

The temperature at condition 2 = T₂

We know that

\dfrac{T_2}{T_1}=\dfrac{P_2}{P_1}\\T_2=T_1\times \dfrac{P_2}{P_1}\\T_2=500\times \dfrac{350}{200}\ K\\

T₂ = 875 K

T₂ =875- 273 °C

T₂ =602  °C

5 0
2 years ago
Other questions:
  • Which of the following substances will show the smallest change in temperature when equal amounts of energy are absorbed?
    7·2 answers
  • Why is the entropy change negative for ring closures?
    14·1 answer
  • A and B, move toward one another. Object A has twice the mass and half the speed of object B. Which of the following describes t
    13·1 answer
  • The Vehicle Assembly Building at the Kennedy Space Center in Florida has a volume of 3,666,500 m3. Convert this volume to liters
    13·1 answer
  • Short wavelengths, from high-pitched sounds, cause displacement of the basilar membrane near the oval window. true false
    15·2 answers
  • Jules is conducting an experiment involving friction. He is measuring the temperature of various objects and surfaces after quic
    14·1 answer
  • A stationary boat in the ocean is experiencing waves from a storm. The waves move at 59 km/h and have a wavelength of 145 m . Th
    15·1 answer
  • How can philosophy help you become a productive citizen<br>​
    13·1 answer
  • In seismology, the P wave is a longitudinal wave. As a P wave travels through the Earth, the relative motion between the P wave
    13·1 answer
  • Athlete mesert defar runs at 10m/s. how long will it take her to go 1 minute ​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!