For this case, what we can do is use the Pythagorean theorem to find the magnitude of the displacement of the car.
We have then

From here, we clear the value of d.
We have then:

Rewriting:
Answer:
The magnitude of the car's displacement is:
d = 20 miles
Complete question is;
A ski jumper travels down a slope and leaves the ski track moving in the horizontal direction with a speed of 24 m/s. The landing incline below her falls off with a slope of θ = 59◦ . The acceleration of gravity is 9.8 m/s².
What is the magnitude of the relative angle φ with which the ski jumper hits the slope? Answer in units of ◦
Answer:
14.08°
Explanation:
The time covered will be given by the formula;
t = (2V_x•tan θ)/g
t = (2 × 24 × tan 59)/9.8
t = 8.152 s
Now, the slope of the flight path at the point of impact will be given by the formula;
tan α = V_y/V_x
We are given V_x = 24 m/s
V_y will be gotten from the formula;
v = gt
Thus;
V_y = gt
V_y = 9.8 × (8.152) = 78.89 m/s
Thus;
tan α = 78.89/24
tan α = 3.2871
α = tan^(-1) 3.2871
α = 73.08°
Thus ;
Relative angle φ = α - θ = 73.08 - 59 = 14.08°
Answer:
t = 25 seconds
Explanation:
Given that,
Distance, d = 115 m
Initial speed, u = 4.2 m/s
Final speed, v = 5 m/s
We need to find the time taken in increasing the speed.
We know that,
Acceleration,
....(1)
The third equation of kinematics is as follows :

Hence, it will take 25 seconds to increase the speed.
Answer:
The increase in the internal energy = 350 J
Explanation:
Given that
Q= 275 J
W= - 125 J
W' = 50 J
W(net)= -125 + 50 = -75 J
Sign -
1.Heat rejected by system - negative
2.Heat gain by system - Positive
3.Work done by system = Positive
4.Work done on the system-Negative
Lets take change in the internal energy =ΔU
We know that
Q= ΔU + W(net)
275 = ΔU -75
ΔU= 275 + 75 J
ΔU=350 J
The increase in the internal energy = 350 J