Answer:
30 (kg)
Explanation:
therefore the mass of the ball is 2 so 30 (kg)
Answer:
Proton: v=0.689 m/s
Neutron: v=0.688 m/s
Electron: v=1265.078 m/s
Alpha particle: v=0.173 m/s
Explanation:
De Broglie equation allows you to calculate the “wavelength” of an electron or any other particle or object of mass m that moves with velocity v:
λ=
h is the Planck constant: 6.626×10⁻³⁴
We know that the wavelength of the particle is 575 nm (575×10⁻⁹m), so we find the velocity v for each particle:
λ=
v=h÷(mλ)
<u>Proton:</u>
m=1.673×10⁻²⁴ g ·
=1.673×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(1.673×10⁻²⁷ kg×575×10⁻⁹m)
v=0.689 m/s
<u>Neutron:</u>
m=1.675×10⁻²⁴ g ·
=1.675×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(1.675×10⁻²⁷ kg×575×10⁻⁹m)
v=0.688 m/s
<u>Electron:</u>
m= 9.109×10⁻²⁸ g ·
=9.109×10⁻³¹ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(9.109×10⁻³¹ kg×575×10⁻⁹m)
v=1265.078 m/s
<u>Alpha particle:</u>
m=6.645×10⁻²⁴ g ·
=6.645×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(6.645×10⁻²⁷ kg×575×10⁻⁹m)
v=0.173 m/s
Answer: The light bulb produces the continuous light. At minimum wavelength the spectrum have maximum intensity.
Explanation:
According to Wein's displacement law, the wavelength is inversely proportional to the temperature.
The intensity depends on the frequency. The frequency is inversely proportional to the wavelength.
Therefore, when the temperature of the light bulb will be maximum then the wavelength will be minimum. At minimum wavelength the spectrum have maximum intensity.
Answer:
conserved
Explanation:
During this process the energy is conserved
Answer:
(a) A = 0.650 m
(b) f = 1.3368 Hz
(c) E = 17.1416 J
(d) K = 11.8835 J
U = 5.2581 J
Explanation:
Given
m = 1.15 kg
x = 0.650 cos (8.40t)
(a) the amplitude,
A = 0.650 m
(b) the frequency,
if we know that
ω = 2πf = 8.40 ⇒ f = 8.40 / (2π)
⇒ f = 1.3368 Hz
(c) the total energy,
we use the formula
E = m*ω²*A² / 2
⇒ E = (1.15)(8.40)²(0.650)² / 2
⇒ E = 17.1416 J
(d) the kinetic energy and potential energy when x = 0.360 m.
We use the formulas
K = (1/2)*m*ω²*(A² - x²) (the kinetic energy)
and
U = (1/2)*m*ω²*x² (the potential energy)
then
K = (1/2)*(1.15)*(8.40)²*((0.650)² - (0.360)²)
⇒ K = 11.8835 J
U = (1/2)*(1.15)*(8.40)²*(0.360)²
⇒ U = 5.2581 J