answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
2 years ago
9

A penny falls from a windowsill which is 25.0 m above the sidewalk. How much time does a passerby on the sidewalk below have to

move out of the way before the penny hits the ground?
Physics
1 answer:
Yakvenalex [24]2 years ago
3 0
T = √(h)/(0.5)(9.81)
t = √(25)/(4.905)
t = √5.1
t = 2.26 seconds

hope this helps and have a great day :)



You might be interested in
You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
Rzqust [24]

Answer:

Explanation:

wave length of sound waves = velocity / frequency

= 340 / 170

λ = 2 m.

When the position of man is exactly at the meddle point between the speakers , sound waves from the speakers reaching man are in same phases ( path difference is zero. ) so intensity of sound is maximum .

Now , the man starts moving towards one of the speakers , his distance from one speaker becomes closer than the other creating path difference for the sound waves reaching his ears.

If he walks a distance of .5 m towards one speaker , path difference created

= .5 x 2 = 1 m

So , path difference = λ /2 ,

there will be destructive interference so minimum sound will be heard there.

When he walks a distance of 1 m , path difference created = 2m

path difference =  λ

so there is constructive interference and maximum  sound will be heard there.

Again we he walks a distance of 1.5 m , path difference created = 3 m

path difference = 3 λ /2

So there will be destructive interference so minimum sound will be heard there.

In this way we see that man starts  from a point of maximum sound intensity , reaches a point of minimum sound intensity , then reaches a point of maximum sound intensity . At last he reaches a position of minimum sound intensity.

3 0
2 years ago
How long does it take for the velocity of the rain drop to reach 99% of its terminal velocity? (assume the conditions from part
vodomira [7]
If you think about it its part a and b 
3 0
2 years ago
In a house the temperature at the surface of a window is 28.9 °C. The temperature outside at the window surface is 7.89 °C. Heat
Alenkasestr [34]

Answer:

-13.18°C

Explanation:

To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.

Its definition is given by the function

\frac{Q}{t} = \frac{kA\Delta T}{d}

Where,

Q = The amount of heat transferred

t = time

k = Thermal conductivity constant

A = Cross-sectional area

\Delta T = The difference in temperature between one side of the material and the other

d= thickness of the material

The problem says that there is a loss of heat twice that of the initial state, that is

Q_2 = 2*Q_1

Replacing,

kA\frac{\Delta T_m}{x} = 2*kA\frac{\Delta T}{x}

\frac{\Delta T}{x}=2*\frac{\Delta T}{x}

\frac{T_i-T_o}{x} = 2\frac{T_1-T_2}{x}

\frac{28.9-T_o}{x} = 2\frac{28.9-7.86}{x}

Solvinf for T_o,

T_o = -13.18

Therefore the temprature at the outside windows furface when the heat lost per second doubles is  -13.18°C

3 0
2 years ago
If you have to apply 40n of force on a crowbar to lift a rock that weights 400n, what is the actual mechanical advantage of the
Mrrafil [7]
The mechanical advantage is defined as the ratio between the force produced by a machine and the force applied in input:
MA= \frac{F_{out}}{F_{in}}
For the crowbar of the problem, the force applied in input is 40 N, while the force produced in output is equal to the weight of the rock that is lifted, so 400 N. Therefore, the mechanical advantage is
MA= \frac{400 N}{40 N}=10
3 0
2 years ago
An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass
Otrada [13]
The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table. 
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. 
I = 7/5*mR^2 M = 7/5*m 
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2 
7 0
2 years ago
Other questions:
  • Which of the following describes the electron sharing between hydrogen and fluorine A.Hydrogen and fluorine share one electron w
    12·1 answer
  • During a 72-ms interval, a change in the current in a primary coil occurs. This change leads to the appearance of a 6.0-mA curre
    5·1 answer
  • Based on what you've learned about heat energy, explain the factors that would determine how quickly a piece of meat cooked on a
    9·2 answers
  • An archer fires an arrow, which produces a muffled "thwok" as it hits a target. If the archer hears the "thwok" exactly 1 s afte
    10·1 answer
  • If a rock is thrown upward on the planet Mars with a velocity of 18 m/s, its height (in meters) after t seconds is given by H =
    5·1 answer
  • A car weighs 14500 N. What is the mass?
    11·2 answers
  • Two ropes have equal length and are stretched the same way. The speed of a pulse on rope 1 is 1.4 times the speed on rope 2. Par
    11·1 answer
  • Two radioactive nuclei A and B are present in equal numbers to begin with. Three days later, there are 4.04 times as many A nucl
    8·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • A green ball has a mass of 0.525 kg and a blue ball has a mass of 0.482 kg. A croquet player strikes the green ball and it gains
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!