Hello <span>Andijwiltbank
</span>
Question: <span>Often what one expects to see influences what is perceived in the surrounding environment. True or False?
Answer: True
Reason: What we observe about the environment decides what we believe about it and how we react.
Hope This Helps :-)
-Chris</span>
Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.
Answer:
Tension in the cable is T = 16653.32 N
Explanation:
Give data:
Cross section Area A = 1.3 m^2
Drag coefficient CD = 1.2
Velocity V = 4.3 m/s
Angle made by cable with horizontal =30 degree
Density 
Drag force FD is given as


Drag force = 14422.2 N acting opposite to the motion
As cable made angle of 30 degree with horizontal thus horizontal component is take into action to calculate drag force
TCos30 = F_D


T = 16653.32 N
Answer:
e*P_s = 11 W
Explanation:
Given:
- e*P = 1.0 KW
- r_s = 9.5*r_e
- e is the efficiency of the panels
Find:
What power would the solar cell produce if the spacecraft were in orbit around Saturn
Solution:
- We use the relation between the intensity I and distance of light:
I_1 / I_2 = ( r_2 / r_1 ) ^2
- The intensity of sun light at Saturn's orbit can be expressed as:
I_s = I_e * ( r_e / r_s ) ^2
I_s = ( 1.0 KW / e*a) * ( 1 / 9.5 )^2
I_s = 11 W / e*a
- We know that P = I*a, hence we have:
P_s = I_s*a
P_s = 11 W / e
Hence, e*P_s = 11 W
Hublle Space Telescope
- Orbits around Earth.
- Receive light before it enters Earth's Atmosphere.
- Get information about stars before they are born.
Alma Radio Telescope
- Installed on land.
- Receive light after it passes through Earth's Atmosphere.
- Get information about stars after they are born.