Complete Question
The diagram for this question is shown on the first uploaded image
Answer:
The value is 
Explanation:
From the question we are told that
The length of the stretcher is 
The weight of the stretcher is 
The weight for Wayne is 
The distance of center of gravity for Wayne from Chris is 
Generally taking moment about the first end where Chris is
=> upward moment
Here
is the force applied by Jamie
Generally taking moment about the second end where Jamie is
=> downward moment
Generally at equilibrium , the upward moment is equal to the downward moment

=> 
=> 
Answer:
The velocity is 
Explanation:
From the question we are told that
The first distance is 
The first speed is 
The second distance is 
The second speed is 
Generally the time taken for first distance is



The time taken for second distance is



The total time is mathematically represented as

=> 
=> 
Generally the constant velocity that would let her finish at the same time is mathematically represented as

=> 
=> 
Answer:
<em>a) Fvt cosθ</em>
<em>b) Fv cosθ</em>
<em></em>
Explanation:
Each horse exerts a force = F
the rope is inclined at an angle = θ
speed of each horse = v
a) In time t, the distance traveled d = speed x time
i.e d = v x t = vt
also, the resultant force = F cosθ
Work done W = force x distance
W = F cosθ x vt = <em>Fvt cosθ</em>
<em></em>
b) Power provided by the horse P = force x speed
P = F cosθ x v
P = <em>Fv cosθ</em>
Answer:
the internal energy of the gas is 433089.52 J
Explanation:
let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.
the internal energy of an ideal gas is given by:
Ein = 3/2×n×R×T
= 3/2×(5.3)×(8.31451)×(24 + 273)
= 433089.52 J
Therefore, the internal energy of this gas is 433089.52 J.
Answer:
(a) 153.37 g
(b) 5705 kJ
Explanation:
(a) To find the amount of bean needed by a man you first calculate the equivalence in beans to 2500kJ

Thus, 153.37 g has the energy needed by a man that needs 200kJ per day.
(b) The amount of energy per pot of bean is given by:

Thus, the energy is 5705kJ