If i remeber correctly when dealing with real world cordinate systems as you rotate around clockwise you move in a positive direction. but all the examples i have done said north was 0 degrees, so i may be wrong
E = ½KA^2 is the mechanical energy of any oscillator. It is the sum of elastic potential energy and
kinetic energy. When amplitude A
decreases by 3%, then
(E2-E1)/E1 = {½K(A2^2/A1^2) }/ ½K(A1^2)
= {(A2^2 – A1^2) / (A1^2)}
= 97^2 – 100^2/100^2
= 5.91% of the mechanical energy is lost each cycle.
The Correct answer is (B), Because the reject each other.
Answer:
v₂ = v/1.5= 0.667 v
Explanation:
For this exercise we will use the conservation of the moment, for this we will define a system formed by the two students and the cars, for this isolated system the forces during the contact are internal, therefore the moment conserves.
Initial moment before pushing
p₀ = 0
Final moment after they have been pushed
= m₁ v₁ + m₂ v₂
p₀ = 
0 = m₁ v₁ + m₂ v₂
m₁ v₁ = - m₂ v₂
Let's replace
M (-v) = -1.5M v₂
v₂ = v / 1.5
v₂ = 0.667 v
Do you have a picture of the diagram that I could view?