When air is blown into the open pipe,
L = 
where nis any integral number 1,2,3,4 etc. and λ is the wavelength of the oscillation
⇒λ=
Note here that n=1 is for fundamental, n=2 is first harmonic and so on..
⇒ third harmonic will be n=4
Given L=6m, n=4, solving for λ we get:
λ=
=3m
Relationship of frequency(f), velocity of sound (c) and wavelength(λ) is:
c=f.λ Or f= 
⇒f=
≈115 Hz
If Earth was twice as far from the sun, the force of gravity attracting the Earth to the sun would be only one-quarter as strong. The correct answer will be C.
Answer:
The total kinetic energy of both particles is 
Explanation:
Given that,
Kinetic energy of nucleus
Kinetic energy of proton 
Radius of proton 
We need to calculate the final potential energy
Using formula of final potential energy

Put the value into the formula


We need to calculate the initial energy of both the particles
Using formula of energy



We need to calculate the total kinetic energy of both particles
Using conservation of energy





Hence, The total kinetic energy of both particles is 
Answer:
Explanation:
Since the front and back of the rocket simultaneously line up with forward and backward end of the platform respectively .
Then length of the platform = length of the train rocket .
A )
Time to cross a particular point on the platform
= length of rocket train / .96 x 3 x 10⁸
= 90 / .96 x 3 x 10⁸
= 31.25 x 10⁻⁸ s
B) Rest length of the rocket = length of platform = 90 m
C ) length of platform as viewed by moving observer =

= 
= 321 m
D ) For the observer on platform time taken = 31.25 x 10⁻⁸ s
for the observer in the rocket , time will be dilated so time recorded by observer in motion ,
8.75 x 10⁻⁸ s .
They are both right because you can note both things, I mean Raphael and Lucinda, both has a right statement or explanation about the wave. Wave by nothing is both for its wavelength and for its frequency. So Raphael and Lucinda are both correct because you can note both wavelength and frequency.