Answer:
Speed of 1.83 m/s and 6.83 m/s
Explanation:
From the principle of conservation of momentum
where m is the mass,
is the initial speed before impact,
and
are velocity of the impacting object after collision and velocity after impact of the originally constant object
Therefore
After collision, kinetic energy doubles hence
Substituting 5 m/s for
then
Also, it’s known that
hence
Solving the equation using quadratic formula where a=2, b=-10 and c=-25 then
Substituting,
Therefore, the blocks move at a speed of 1.83 m/s and 6.83 m/s
The answer is letter a. It is best to slow down in situations of heavy rain or flooded road as skid could be the result if you lose out of control because the driver isn't slowing down. That is why it is being said that tires can ride on a thin film of water skis as it could skid if it has lost control if the driver hadn't slowed down.
<h2>The hiker will go up to 850 m on the hill</h2>
Explanation:
The total energy gained by the hiker = 140 x 4186 J
This energy is consumed in the potential energy acquired , while climbing up the hill.
The potential energy P.E = mass of hiker x acceleration due to gravity x height
Thus
140 x 4186 = 69 x 10 x h
or h =
= 850 m
If the 20% of the total energy is used
the height h₀ =
= 170 m
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ
Therefore, it can be reasonably concluded according to your
unfinished syllogism, that there are many people who do not
think scientifically.