Answer:
The force applied on the big piston is 1306.67 N
Explanation:
Given;
force applied on small piston, F₁ = 200 N
diameter of the small piston, d₁ = 4.37 cm
radius of the small piston, r₁ = d₁/2 = 2.185 cm
Area of the small piston, A₁ = πr₁² = π(2.185 cm)² = 15 cm²
Area of the big piston, A₂ = 98 cm²
The pressure of the piston is given by;

Where;
F₂ is the force on big piston

Therefore, the force applied on the big piston is 1306.67 N
The neutral pH is 7. Less than 7 indicates an acid and more than 7 indicates a base (up to 14).
<span>
NaCl - it's a salt (we can't measure the pH)
H2O - it can be an acid but also a base (the pH it is almost neutral,meaning close to 7 )
HF - it is a strong acid
</span><span>
KOH
- it is a strong base (pH=14)
</span>
↓
He needs to use HF (Hydrogen fluoride) to decrease the pH.
Answer:
99.95%
Explanation:
A double pulsar system named PSR J0737-3039A/B in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.
A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.
Answer:
A = 1.4 m/s²
B = -0.10493 m/s³
a = 1.29507 m/s²
T = 28095.8271 N
T = 1.13198 W
Explanation:
t = Time taken
g = Acceleration due to gravity = 9.81 m/s²
The equation

Differentiating with respect to time

At t = 0

Hence, A = 1.4 m/s²

B = -0.10493 m/s³
At t = 5 seconds

a = 1.29507 m/s²

T = 28095.8271 N
Weight of rocket


T = 1.13198 W
I will discuss what is a gravitational force since no figures are attached or given. An objects weight is dependent upon its location in the universe
because they exhibit gravitational waves. For example, the earth is a massive
planet. Because of its massiveness, it exhibits a strong gravitational force
within it. In turn, the objects near the earth will be attracted to it and
thereby feels a much stronger gravity on earth. That is why bodies of water,
despite its liquid features, stick to the earth. The heavier the body is, the
stronger its gravitational pull. Another example is the Milky Way Galaxy, there is a
gravitational pull because it is to other galaxies. Also, other galaxies are
heavier than the earth and therefore, it is attracted to the Milky Way galaxy
because of its gravitational pull.