answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
2 years ago
6

Imagine you are riding on a yacht in the ocean and traveling at 20 mph. You then hit a golf ball at 100 mph from the deck of the

yacht. You see the ball move away from you at 100mph, while a person standing on a near by beach would observe your golf ball traveling at 120 mph (20 mph + 100 mph).
Now imagine you are aboard the Hermes spacecraft traveling at 0.1c (1/10 the speed of light) past Mars and shine a laser from the front of the ship. You would see the light traveling at c (the speed of light) away from your ship. According to Einstein’s special relativity, how fast will a person on Mars observe the light to be traveling?


A) 0.1c (1/10 the speed of light)

B) c (the speed of light)

C)1.1c (c+0.1c)
Physics
2 answers:
dangina [55]2 years ago
4 0

According to Einstein's special theory of relativity, the speed of the light in a vacuum is the same no matter the speed with which an observer travels. So the answer should be A) 0,1c (1/10 the speed of light)

Drupady [299]2 years ago
4 0

Answer:

B) c (the speed of light)

Explanation:

Adding the velocities of the golf ball and the boat is fine in the classical sense.

But the light photons are not bound by the rules of classical dynamics.

Einstein postulated that the speed of light is constant in every frame of reference, irrespective of the speed of the observer. It is the maximum velocity at which an object can move.

So the laser would appear to move at the speed of light for an observer inside the Hermes spacecraft and to the observer on mars.

It is because, inside the Hermes time will be slowed down to make sure nothing moves faster than light. This is called time dilation

let T_{o} be the time measured inside Hermes,

Time outside Hermes

T = \frac{T_{o}}{\sqrt{1-\frac{v^{2} }{c^{2} } } } \\\\T = \frac{T_{o}}{\sqrt{1-\frac{(0.1c)^{2} }{c^{2} } } } \\\\T = 1.005T_{o}

So 1 second inside Hermes is as long as 1.005 seconds outside Hermes, so the laser would appear to travel at the speed of light to observers outside and inside Hermes.

You might be interested in
A car is travelling to the right with a speed of 42\,\dfrac{\text m}{\text s}42 s m ​ 42, space, start fraction, m, divided by,
Effectus [21]

Answer:

d = 84 m

Explanation:

As we know that when an object moves with uniform acceleration or deceleration then we can use equation of kinematics to find the distance moved by the object

here we know that

initial speed v_i = 42 m/s

final speed v_f = 0

time taken by the car to stop

t = 4s

now the distance moved by the car before it stop is given as

d = \frac{v_f + v_i}{2} \times t

now we have

d = \frac{42 + 0}{2} \times 4

d = 84 m

7 0
2 years ago
Read 2 more answers
1. Determina el momento que produce una fuerza de 7 N tangente a una rueda de un metro de diámetro, sabiendo que el punto de apl
Rudik [331]

Answer:

τ= F r     into the blade

Explanation:

The moment of a force is defined by

         τ = F x r

where the bold indicates vectors

Let us write in the expression in magnitude

         τ = F r sin θ

in our case the force is tangent to the wheel therefore the angle between F and the radius is 90º, and the sin 90 = 1

       τ= F r

The direction of τ can be used by the rule of the right hand, the fingers curve in the direction of the torque when advancing from the force to the radius and the thumb points in the direction of the torque.

In this case, for a clockwise rotation, the fingers are curved in the direction and the thumb points into the blade, this is the direction of the τ.

TRASLATE

El momento de una fura es definido por

         τ = F x r

donde la negrillas indican vectores

Escribamos en ta expresión en magnitud

          τ = F r sin θ

en nuestro caso la fuerza es tangente a la rueda por lo tanto el angulo entre F y el radios es 90º, y el sin 90=1

        τ = F r

la dirección de tau la podemos  usar la regla de la mano derecha, los dedos curva en la dirección del torque al avanzar dese la fuerza al radio y el pulgar apunta en la dirección del torque.

En este caso para un giro en sentido horario los dedos se curvan ente sentido y el pulgar apunta hacia dentro de lla hoja, esta es la dirección del troque

5 0
2 years ago
Maverick and goose are flying a training mission in their F-14. They are flying at an altitude of 1500 m and are traveling at 68
den301095 [7]

Answer:

The bomb will remain in air for <u>17.5 s</u> before hitting the ground.

Explanation:

Given:

Initial vertical height is, y_0=1500\ m

Initial horizontal velocity is, u_x=688\ m/s

Initial vertical velocity is, u_y=0(\textrm{Horizontal velocity only initially)}

Let the time taken by the bomb to reach the ground be 't'.

So, consider the equation of motion of the bomb in the vertical direction.

The displacement of the bomb vertically is S=y-y_0=0-1500=-1500\ m

Acceleration in the vertical direction is due to gravity, g=-9.8\ m/s^2

Therefore, the displacement of the bomb is given as:

S=u_yt+\frac{1}{2}gt^2\\-1500=0-\frac{1}{2}(9.8)(t^2)\\1500=4.9t^2\\t^2=\frac{1500}{4.9}\\t=\sqrt{\frac{1500}{4.9}}=17.5\ s

So, the bomb will remain in air for 17.5 s before hitting the ground.

6 0
2 years ago
Hippos spend much of their lives in water, but amazingly, they don’t swim. manatees, They have, like little very body fat. The d
kenny6666 [7]

Answer:

428.59 N

Explanation:

Buoyant force, B=Vg\rho where V is volume, g is gravitational constant and \rho is density

B+F_{upward}=mg where F_{upward} is upward force

Vg\rho_{w}+F_{upward}=mg

F_{upward}=mg- Vg\rho_{w}

F_{upward}=g(mg- V\rho_{w})=g(m-m\frac {\rho_{w}{\rho_{hippo}} where \rho_{hippo} is the density of hippo

F_{upward}=mg(1-\frac {\rho_{w}}{\rho_{hippo}})

Using g as 9.81

F_{upward}=1500*9.81*(1-1000/1030)= 428.5922 N

Therefore, the upward force=428.59 N

3 0
2 years ago
The posted speed limit on the road heading from your house to school is45 mi/h, which is about 20 m/s. If you live 8 km (8,000 m
zaharov [31]

Answer:

20.

Explanation:

not. tráfic. is. 20. minuts.

6 0
1 year ago
Read 2 more answers
Other questions:
  • Two movers use a rope system to lift a box to a third-story apartment. They do 1,200 J of work on the rope system, and the rope
    10·2 answers
  • Dr. Matthews has submitted a proposal to the institutional review board (IRB) of a university. At this university, she intends t
    14·1 answer
  • Which pair of graphs represent the same motion of an object
    13·2 answers
  • An object which has a mass of 70 kg is sitting on a cliff 10 m high. Calculate the object's Potential energy. Given g = 10m/s2
    11·1 answer
  • It takes Venus 225 days to orbit the sun. If the Earth-sun distance is 1.5 × 10^11 m, what
    7·1 answer
  • Choose the correct statement of Kirchhoff's voltage law.
    8·1 answer
  • Two wires with equal lengths are made of pure copper. The diameter of wire A is three times the diameter of wire B. When 8 kg ma
    7·1 answer
  • A cylindrical tank of methanol has a mass of 40 kgand a volume of 51 L. Determine the methanol’s weight, density,and specific gr
    10·1 answer
  • A single-turn current loop carrying a 4.00 A current, is in the shape of a right-angle triangle with sides of 50.0 cm, 120 cm, a
    15·1 answer
  • A substance occupies one half of an open container. The atoms of the substance are closely packed but are still able to slide pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!