When the Skydiver jump out a plane, his Potential Energy is being converted or transform into Kinetic energy due to gravity. Hope this helps
Answer:

Explanation:
<u>Free Fall Motion</u>
A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.
The speed vf of the object when a time t has passed is given by:

Where 
Similarly, the distance y the object has traveled is calculated as follows:

If we know the height h from which the object was dropped, we can solve the above equation for t:

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

Therefore, it has traveled down a distance:

Thus, the height of the pen is:

Answer:
a)W=8.333lbf.ft
b)W=0.0107 Btu.
Explanation:
<u>Complete question</u>
The force F required to compress a spring a distance x is given by F– F0 = kx where k is the spring constant and F0 is the preload. Determine the work required to compress a spring whose spring constant is k= 200 lbf/in a distance of one inch starting from its free length where F0 = 0 lbf. Express your answer in both lbf-ft and Btu.
Solution
Preload = F₀=0 lbf
Spring constant k= 200 lbf/in
Initial length of spring x₁=0
Final length of spring x₂= 1 in
At any point, the force during deflection of a spring is given by;
F= F₀× kx where F₀ initial force, k is spring constant and x is the deflection from original point of the spring.

Change to lbf.ft by dividing the value by 12 because 1ft=12 in
100/12 = 8.333 lbf.ft
work required to compress the spring, W=8.333lbf.ft
The work required to compress the spring in Btu will be;
1 Btu= 778 lbf.ft
?= 8.333 lbf.ft----------------cross multiply
(8.333*1)/ 778 =0.0107 Btu.
Note: The diagram referred to in the question is attached here as a file.
Answer:
The magnitude of the magnetic field is 
Explanation:
The magnetic field can be determined by the relationship:
...............(1)
Were I is the current flowing through the wires
The distance R from point 1 to m is calculated using the pythagora's theorem


Substituting R into equation (1)


Answer:
275 kPa
Explanation:
mass of the gas=m=1.5 kg
initial volume if the gas=V₁=0.04 m³
initial pressure of the gas= P₁=550 kPa
as the condition is given final volume is double the initial volume
V₂=final volume
V₂=2 V₁
As the temperature is constant
T₁=T₂=T
=
putting the values in the equation.
=
P₂=
P₂=
P₂=275 kPa
So the final pressure of the gas is 275 kPa.