Henry will lift 200 N load 20 m up a ladder in 40 s. While the Ricardo will take 400 N load in 80 seconds. So, For Henry to take 400 N load it will take him 80 seconds in two attempts. And,also, he will have to cover 40 m of distance.
Explanation:
The given data is as follows.
C =
R =
ohm
C
Q =
Formula to calculate the time is as follows.
0.135 =
= 7.407
t = 4.00 s
Therefore, we can conclude that time after the resistor is connected will the capacitor is 4.0 sec.
Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.
the first one is medium, the second one is type, and the third one is temperature
. if i gave the correct answer, please give best answer x
Answer: 35*10^3 N/m
Explanation: In order to explain this problem we know that the potential energy for spring is given by:
Up=1/2*k*x^2 where k is the spring constant and x is the streching or compresion position from the equilibrium point for the spring.
We also know that with additional streching of 2 cm of teh spring, the potential energy is 18J. Then it applied another additional streching of 2 cm and the energy is 25J.
Then the difference of energy for both cases is 7 J so:
ΔUp= 1/2*k* (0.02)^2 then
k=2*7/(0.02)^2=35000 N/m