Answer:
2 x 10⁻³ volts
Explanation:
B = magnetic of magnetic field parallel to the axis of loop = 1 T
= rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²
θ = Angle of the magnetic field with the area vector = 0
E = emf induced in the loop
Induced emf is given as
E = B
E = (1) (20 x 10⁻⁴ )
E = 2 x 10⁻³ volts
E = 2 mV
Answer:
EMF induced in the loop is 9.4 V
Explanation:
As we know that initial magnetic flux of the loop is given as



As soon as the area of the loop becomes zero the final magnetic flux of the loop is ZERO
Now as per faraday's law of electromagnetic induction the EMF is induced due to rate of change in magnetic flux
so we will have

so we will have


Refer to the diagram shown below.
When an athlete is in motion, he/she exerts a vertical force (the person's weight, W) on the ground. The ground exerts an equal and opposite force, N, the normal reaction on the athlete, so that W = N.
At the same time, the ground exerts a horizontal force, F, o n the athlete so that he/she does not slip.
The magnitude of the horizontal force is
F = μN = μW
where μ = the dynamic coefficient of friction.
Answer:
The horizontal force is μW,
where
W = the weight of the athlete and,
μ = the dynamic coefficient of friction.
Gravity changes as the altitude change.<span> The gravitational force is proportional to 1/R2, where R is the distance from the center of the Earth the radius of earth where gravity is 9.8 m/s^2 is 6400 km this will serve as the zero mark.
g1/(g2) = R2^2/(R1)^2
so we set the constant values to R1 and the unknown distance as x
(9.8)/(8.80) = (6400-x)2/(6400)^2
solving for x we will get
x = 345.85 km above the earths surface
</span>
<span>Hope my answer would be a great help for you.
If </span>you have more questions feel free to ask here at Brainly.
<span> </span>
The value for the slope is <span>M=1.13</span>