The change in electric potential energy of the ion is equal to the charge multiplied by the voltage difference:

where the charge q of the na+ ion is equal to one positive charge, so it's equal to the proton charge:

, and Vf and Vi are the final and initial voltages.
Substituting the numbers, we find:
The force exerted on the car during this stop is 6975N
<u>Explanation:</u>
Given-
Mass, m = 930kg
Speed, s = 56km/hr = 56 X 5/18 m/s = 15m/s
Time, t = 2s
Force, F = ?
F = m X a
F = m X s/t
F = 930 X 15/2
F = 6975N
Therefore, the force exerted on the car during this stop is 6975N
Answer:
625000 N/ m
Explanation:
m= 20 kg
v= 30 m/s
x= 12 cm
k = ?
Here when the mass when hits at spring its speed is
Vi= 30 m/s
Finally it comes to rest after compressing for 12 cm
i-e Vf = 0 m/s
Distance= S= 12 cm = 0.12 m
using
2aS= Vf2 - Vi2
==> 2a ×0.12 = o- 30 × 30
==> a = 900 ÷ 0.24 = 3750 m/sec2
Now we know;
F = ma
F= -Kx
==> ma= -kx
==> 20 × 3750 = -K × 0.12
==> k = 625000 N/ m
His average speed is (35m/45s) = 7/9 meters per second.
His average velocity is (30m W + 5m E) / (45s) = 25 m/s West .
Answer:
a) (95.4 i^ + 282.6 j^) N
, b) 298.27 N 71.3º and c) F' = 298.27 N θ = 251.4º
Explanation:
a) Let's use trigonometry to break down Jennifer's strength
sin θ = Fjy / Fj
cos θ = Fjx / Fj
Analyze the angle is 32º east of the north measuring from the positive side of the x-axis would be
T = 90 -32 = 58º
Fjy = Fj sin 58
Fjx = FJ cos 58
Fjx = 180 cos 58 = 95.4 N
Fjy = 180 sin 58 = 152.6 N
Andrea's force is
Fa = 130.0 j ^
We perform the summary of force on each axis
X axis
Fx = Fjx
Fx = 95.4 N
Axis y
Fy = Fjy + Fa
Fy = 152.6 + 130
Fy = 282.6 N
F = (95.4 i ^ + 282.6 j ^) N
b) Let's use the Pythagorean theorem and trigonometry
F² = Fx² + Fy²
F = √ (95.4² + 282.6²)
F = √ (88963)
F = 298.27 N
tan θ = Fy / Fx
θ = tan-1 (282.6 / 95.4)
θ = tan-1 (2,962)
θ = 71.3º
c) To avoid the movement they must apply a force of equal magnitude, but opposite direction
F' = 298.27 N
θ' = 180 + 71.3
θ = 251.4º