answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Over [174]
2 years ago
15

Some drops a ball off of the top of a 125-m-tall building. In this prob-lem, you will be solving for the time it takes the ball

to hit the ground.(a)Define your coordinate system, be thorough.(b)Write down the given infor-mation, be sure to include hidden information.(c)State what physics principleis at play here. How do you know this?(d)Select an equation.(e)Solve forthe time it takes for the ball to hit the ground.
Physics
1 answer:
Nimfa-mama [501]2 years ago
6 0

Answer:

t = 5.05 s

Explanation:

This is a kinetic problem.

a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m

b) in this system the equations of motion are

              y = v₀ t + ½ g t²

where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth

e)    y = 0 + ½ g t²

     t = √ (2y / g)

     t = √(2 125 / 9.8)

     t = 5.05 s

You might be interested in
Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
Pachacha [2.7K]
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg. 

F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N

Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m

Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356  N

Ratio = 0.356  N/589.18 N
<em>Ratio = 6.04</em>
5 0
2 years ago
Read 2 more answers
The image shows a pendulum that is released from rest at point A. Shari tells her friend that no energy transformation occurs as
Masja [62]
Is  D    the  right  answer
6 0
2 years ago
Read 2 more answers
A circular coil has a 10.0 cm radius and consists of 30.0 closely wound turns of wire. an externally produced magnetic field of
IrinaVladis [17]
Magnetic flux can be calculated by the product of the magnetic field and the area that is perpendicular to the field that it penetrates. It has units of Weber or Tesla-m^2. For the first question, when there is no current in the coil, the flux would be:

ΦB = BA
          A = πr^2
          A = π(.1 m)^2
          A = π/100 m^2   

 ΦB = 2.60x10^-3 T (π/100 m^2 ) ΦB = 8.17x10^-5 T-m^2 or Wb (This is only for one loop of the coil)

The inductance on the coil given the current flows in a certain direction can be calculated by the product of the total number of turns in the coil and the flux of one loop over the current passing through. We do as follows:

L = N (ΦB ) / I
L = 30 (8.17x10^-5 T-m^2) / 3.80 = 6.44x10^-4 mH

6 0
2 years ago
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m. Part A How m
r-ruslan [8.4K]

PART A)

Electrostatic potential at the position of origin is given by

V = \frac{kq_1}{r_1} + \frac{kq_2}{r_2}

here we have

q_1 = 1.6 \times 10^{-19} C

q_2 = -1.6 \times 10^{-19} C

r_1 = r_2 = 1 m

now we have

V = \frac{Ke}{r} - \frac{Ke}{r}

V = 0

Now work done to move another charge from infinite to origin is given by

W = q(V_f - V_i)

here we will have

W = e(0 - 0) = 0

so there is no work required to move an electron from infinite to origin

PART B)

Initial potential energy of electron

U = \frac{Kq_1e}{r_1} + \frac{kq_2e}{r_2}

U = \frac{9\times 10^9(-1.6\times 10^{-19}(-1.6 \times 10^{-19})}{19} + \frac{9\times 10^9(1.6\times 10^{-19}(-1.6 \times 10^{-19})}{21}

U = (2.3\times 10^{-28})(\frac{1}{19} - \frac{1}{21})

U = 1.15\times 10^{-30}

Now we know

KE = \frac{1}{2}mv^2

KE = \frac{1}{2}(9.1\times 10^{-31}(100)^2

KE = 4.55 \times 10^{-27} kg

now by energy conservation we will have

So here initial total energy is sufficient high to reach the origin

PART C)

It will reach the origin

4 0
2 years ago
High-speed stroboscopic photographs show that the head of a 200 g golf club is traveling at 43.7 m/s just before it strikes a 45
Helga [31]

Answer:

41.27m/s

Explanation:

According to law of conservation of momentum

m1u1+m2u2 = (m1+m2)v

m1 and m2 are the masses

u1 and u2 are the initial velocities

v is the velocity after impact

Given

m1 = 0.2kg

u1 = 43.7m/s

m2 = 45.9g = 0.0459kg

u2 = 30.7m/s

Required

Velocity after impact v

Substitute the given parameters into the formula

0.2(43.7)+0.0459(30.7) = (0.2+0.0459)v

8.74+1.409 = 0.2459v

10.149 = 0.2459v

v = 10.149/0.2459

v = 41.27m/s

Hence the speed of the golf ball immediately after impact is 41.27m/s

8 0
2 years ago
Other questions:
  • A baseball player is running to second base at 5.03 m/s. when he is 4.80 m from the plate he goes into a slide. the coefficient
    10·2 answers
  • Particles in a __________ wave move in an elliptical or circular motion. question 4 options: sound longitudinal transverse surfa
    11·2 answers
  • A child is riding a bike at a speed of 6m/s with a total kinetic energy of 1224J. If the mass of the child is 30kg, what is the
    8·1 answer
  • A more realistic car would cause the wheels to spin in a manner that would result in the ground pushing it forward with a consta
    11·1 answer
  • The initial velocity of a 4.0-kg box is 11 m/s, due west. After the box slides 4.0 m horizontally, its speed is 1.5 m/s. Determi
    6·1 answer
  • Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
    13·1 answer
  • A 2.80 kg mass is dropped from a height of 4.50 m. find its potential energy(PE) at the moment it is dropped. PLEASE HELP
    6·1 answer
  • Two fun-loving otters are sliding toward each other on a muddy (and hence frictionless) horizontal surface. One of them, of mass
    10·2 answers
  • Which statements describe properties of stars check all that apply
    7·1 answer
  • An overhead projector lens is 32.0 cm from a slide (the object) and has a focal length of 30.1 cm. What is the magnification of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!