Answer:
Check the explanation
Explanation:
A) There are two important angles within the plastic: the angle immediately after the first refraction (the water/plastic interface) and the angle immediately before the second refraction (the plastic/air interface).
To find out how they relate, draw a picture with the path the light follows in the plastic and the normal to both surfaces.
Once you have labeled both angles, keep in mind that the surfaces are parallel, and thus their normal are parallel lines. An important theorem from geometry will give you the relationship between the angles.
Using Snell's Law, θa = asin[(nw/na)*sin(θw)]
B) D = l/tan(θw)
C) D = l/θw
D) d/D = na/nw
Answer:
The vertical distance is ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Explanation:
From the question we are told that
The mass of the cylinder is m
The kinetic frictional force is f
Generally from the work energy theorem

Here E the the energy of the spring which is increasing and this is mathematically represented as

Here k is the spring constant
P is the potential energy of the cylinder which is mathematically represented as

And
is the workdone by friction which is mathematically represented as

So

=> ![\frac{1}{2} * k * d^2 = d[mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%5E2%20%3D%20%20d%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![\frac{1}{2} * k * d = [mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%20%3D%20%20%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
We don't see any circuit diagrams.
This worries us for a few seconds, until we realize that we don't know anything about the experiment described in the problem either, so we don't have to worry about it at all.
Use Scoratic it works with any time of subject
<span>Bit level for a CCD (Charged coupled device) with a greatest possible pixel value of 4095:The relationship between the bit level and pixel value is given as:pixel value = 2^bit level.Most charged coupled devices (CCDs) have 8-bit, 16-bit, 32-bit levels.Using simple mathematics, we can see that 2^12 = 4096.Since the maximum number of pixels is 4095, the bit level is 12., i.e. the CCD has 12-bit level.</span>