Answer:
113.7
Explanation:
maximum distance (s) = 8.9 km
reference intensity (I0) = 1 x 10^{-12} W/m^{2}
power of a juvenile howler monkey (p) = 63 x 10^{-6} W
distance (r) = 210 m
intensity (I) = power/area
where we assume the area of a sphere due to the uniformity of the output in all directions
area = 4π
= 4π x
= 554,176.9 m^{2}
intensity (I) = 
therefore the desired ratio I/I0 =
= 113.7
Answer:
275 kPa
Explanation:
mass of the gas=m=1.5 kg
initial volume if the gas=V₁=0.04 m³
initial pressure of the gas= P₁=550 kPa
as the condition is given final volume is double the initial volume
V₂=final volume
V₂=2 V₁
As the temperature is constant
T₁=T₂=T
=
putting the values in the equation.
=
P₂=
P₂=
P₂=275 kPa
So the final pressure of the gas is 275 kPa.
Answer: The frequency = 1714.3Hz
Explanation: The solution can be achieved by using doppler effect formula.
Since the source is moving toward the observer, the velocity of the observer will be positive.
Please find the attached file for the solution
acceleration of rocket is given here as

now we know that

now integrating both sides



here since its given that rocket will accelerate for t = 10 s
so here we have


so after t = 10 s the speed of rocket will be 130 m/s upwards
<span>14 m/s
Assuming that all of the energy stored in the spring is transferred to dart, we have 2 equations to take into consideration.
1. How much energy is stored in the spring?
2. How fast will the dart travel with that amount of energy.
As for the energy stored, that's a simple matter of multiplication. So:
20 N * 0.05 m = 1 Nm = 1 J
For the second part, the energy of a moving object is expressed as
KE = 0.5 mv^2
where
KE = Kinetic energy
m = mass
v = velocity
Since we now know the energy (in Joules) and mass of the dart, we can substitute the known values and solve for v. So
KE = 0.5 mv^2
1 J = 0.5 0.010 kg * v^2
1 kg*m^2/s^2 = 0.005 kg * v^2
200 m^2/s^2 = v^2
14.14213562 m/s = v
So the dart will have a velocity of 14 m/s after rounding to 2 significant figures.</span>