<h2>Answer:</h2>
<u>This term shows the </u><u>mass of the space shuttle</u>
<h2>Explanation:</h2>
We know that the mass of the Earth is 5.972 × 10^24 kg. Similarly the sum of mass of earth and the mass of shuttle must be a greater number as compared to the number given. It simply means that the mass of earth is itself 5.972 × 10^24 kg and the value given is 3 × 105 kg so it is obvious that if was the sum then it must be greater than the mass of earth. Therefore we can say that this not the mass of earth, neither the sum of mass of earth and shuttle, but this is only the mass of space shuttle which is the last multiple choice.
Answer:
B or D but im pretty sure it is D
Explanation:
When molecules are left in the sun, it heats up. When molecules heat up, the begin to vibrate rapidly. The sun is not constant as it could get blocked by clouds, so it would, at times, slow down the movement of the molecules. The answer is most likely D.
Answer:
100/10 = 10 , 10 × 10 = 100÷20 = 5
I'm pretty sure its wrong
Answer:
remains the same, but the apparent brightness is decreased by a factor of four.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).
The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.
The apparent brightness of a star is measured in watts per square meter.
If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).
Some of the examples of stars are;
- Canopus.
- Sun (closest to the Earth)
- Betelgeuse.
- Antares.
- Vega.