Coefficient of static friction = tan(a) = 0.4
r = 740 m
g = 9.8 m/s²

v = √(9.8 × 740 × 0.4) m/s
v ≈ 53.85908 m/s
By definition, the kinetic energy is given by:
K = (1/2) * m * v ^ 2
where
m = mass
v = speed
We must then find the speed of both objects:
blue puck
v = root ((0) ^ 2 + (- 3) ^ 2) = 3
gold puck
v = root ((12) ^ 2 + (- 5) ^ 2) = 13
Then, the kinetic energy of the system will be:
K = (1/2) * m1 * v1 ^ 2 + (1/2) * m2 * v2 ^ 2
K = (1/2) * (4) * (3 ^ 2) + (1/2) * (6) * (13 ^ 2)
K = <span>
525</span> J
answer
The kinetic energy of the system is<span>
<span>525 </span></span>J
Answer :
The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.
Explanation:
Given,
Atomic mass of silver = 107.87 g/mol
Density of silver = 10.35 g/cm^3
Converting to g/m^3,
= 10.35 g/cm^3 × 10^6cm^3/m^3
= 10.35 × 10^6 g/m^3
Avogadro's number = 6.022 × 10^23 atoms/mol
Fraction of lattice sites that are vacant in silver = 1 × 10^-6
Nag = (Na * Da)/Aag
Where,
Nag = Total number of lattice sites in Ag
Na = Avogadro's number
Da = Density of silver
Aag = Atomic weight of silver
= (6.022 × 10^23 × (10.35 × 10^6)/107.87
= 5.778 × 10^28 atoms/m^3
The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6
= 5.778 × 10^22/m^3.
Answer: X
Explanation:
This situation can be illustrated as a car in circular motion (image attached).
In circular motion the acceleration vector
is always directed toward the center of the circumference (that's why it's called centripetal acceleration).
So, in this case the arrow labeled X is the only that points toward the center, hence it represents the car's centripetal acceleration
Answer:
16,18,22
Or
1,3,7
Explanation:
The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation