answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
1 year ago
11

A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. the astronaut is able to throw a spare 10.0 kg

oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown.
Physics
2 answers:
Llana [10]1 year ago
6 0

There are other forces at work here nevertheless we will imagine it is just a conservation of momentum exercise. Also the given mass of the astronaut is light astronaut.

The solution for this problem is using the formula: m1V1=m2V2 but we need to get V1:

V1= (m2/m1) V2


V1= (10/63) 12 = 1.9 m/s will be the final speed of the astronaut after throwing the tank. 

Tanya [424]1 year ago
4 0

Answer:

The astronaut's final speed with respect to the shuttle after the tank is thrown is 1.9 m/s.

Explanation:

It is given that,

Mass of the astronaut, m = 63 kg

Mass of the oxygen tank, m' = 10 kg

Speed of the oxygen tank, v' = 12 m/s

Let v is the astronaut's final speed with respect to the shuttle after the tank is thrown. Initial momentum of the system i.e. astronaut + oxygen tank will be equal to 0. Using the conservation of momentum as :

p_i=p_f

0=mv+m'v'

v=\dfrac{m'v'}{m}

v=-\dfrac{10\times 12}{63}

v = -1.9 m/s

So, the astronaut's final speed with respect to the shuttle after the tank is thrown is 1.9 m/s.

You might be interested in
An electron is in motion at 4.0 × 106 m/s horizontally when it enters a region of space between two parallel plates, as shown, s
max2010maxim [7]

Answer:

xmax = 9.5cm

Explanation:

In this case, the trajectory described by the electron, when it enters in the region between the parallel plates, is a semi parabolic trajectory.

In order to find the horizontal distance traveled by the electron you first calculate the vertical acceleration of the electron.

You use the Newton second law and the electric force on the electron:

F_e=qE=ma             (1)

q: charge of the electron = 1.6*10^-19 C

m: mass of the electron = 9.1*10-31 kg

E: magnitude of the electric field = 4.0*10^2N/C

You solve the equation (1) for a:

a=\frac{qE}{m}=\frac{(1.6*10^{-19}C)(4.0*10^2N/C)}{9.1*10^{-31}kg}=7.03*10^{13}\frac{m}{s^2}

Next, you use the following formula for the maximum horizontal distance reached by an object, with semi parabolic motion at a height of d:

x_{max}=v_o\sqrt{\frac{2d}{a}}             (2)

Here, the height d is the distance between the plates d = 2.0cm = 0.02m

vo: initial velocity of the electron = 4.0*10^6m/s

You replace the values of the parameters in the equation (2):

x_{max}=(4.0*10^6m/s)\sqrt{\frac{2(0.02m)}{7.03*10^{13}m/s^2}}\\\\x_{max}=0.095m=9.5cm

The horizontal distance traveled by the electron is 9.5cm

4 0
2 years ago
Imagine you want to get 1 kcal of energy from a cow. How much energy would the cow need to get from plants? Why?
ZanzabumX [31]
1000 kcal because you only get 10% of the energy of the thing you eat
7 0
1 year ago
On a guitar, the lowest toned string is usually strung to the E note, which produces sound at 82.4 82.4 Hz. The diameter of E gu
Vsevolod [243]

The complete and comprehensive solution is attached.

8 0
1 year ago
The force diagram represents a girl pulling a sled with a mass of 6.0 kg to the left with a force of 10.0 N at a 30.0 degree ang
STatiana [176]

the correct answers are 54N and -1,2m/s^2

6 0
1 year ago
Read 2 more answers
A car is traveling at 20 meters/second and is brought to rest by applying brakes over a period of 4 seconds. What is its average
frez [133]
 (u) = 20 m/s 
(v) = 0 m/s 
<span> (t) = 4 s 
</span>
<span>0 = 20 + a(4) 

</span><span>4 x a = -20 
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
8 0
2 years ago
Read 2 more answers
Other questions:
  • One beam of electrons moves at right angles to a magnetic field. the force on these electrons is 4.9 x 10-14 newtons. a second b
    13·1 answer
  • As an object moves along the x axis, many measurements are made of its position, enough to generate a smooth, accurate graph of
    12·2 answers
  • A typical human contains 5.00 l of blood, and it takes 1.00 min for all of it to pass through the heart when the person is resti
    14·2 answers
  • Which combination of units can be used to express the magnetic field?
    13·1 answer
  • An unstable nucleus which has a tendency to spontaneously change its form with the emission of high-energy particles or photons
    6·2 answers
  • The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit
    6·1 answer
  • roblem 10: In an adiabatic process oxygen gas in a container is compressed along a path that can be described by the following p
    9·1 answer
  • Apollo 14 astronaut Alan B. Shepard Jr. used an improvised six-iron to strike two golf balls while on the Fra Mauro region of th
    7·1 answer
  • (b) The density of aluminum is 2.70 g/cm3. The thickness of a rectangular sheet of aluminum foil varies
    5·1 answer
  • The air around a pool and the water in the pool receive equal amounts of energy from the sun. Why does the air experience a grea
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!