answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
2 years ago
11

A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. the astronaut is able to throw a spare 10.0 kg

oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown.
Physics
2 answers:
Llana [10]2 years ago
6 0

There are other forces at work here nevertheless we will imagine it is just a conservation of momentum exercise. Also the given mass of the astronaut is light astronaut.

The solution for this problem is using the formula: m1V1=m2V2 but we need to get V1:

V1= (m2/m1) V2


V1= (10/63) 12 = 1.9 m/s will be the final speed of the astronaut after throwing the tank. 

Tanya [424]2 years ago
4 0

Answer:

The astronaut's final speed with respect to the shuttle after the tank is thrown is 1.9 m/s.

Explanation:

It is given that,

Mass of the astronaut, m = 63 kg

Mass of the oxygen tank, m' = 10 kg

Speed of the oxygen tank, v' = 12 m/s

Let v is the astronaut's final speed with respect to the shuttle after the tank is thrown. Initial momentum of the system i.e. astronaut + oxygen tank will be equal to 0. Using the conservation of momentum as :

p_i=p_f

0=mv+m'v'

v=\dfrac{m'v'}{m}

v=-\dfrac{10\times 12}{63}

v = -1.9 m/s

So, the astronaut's final speed with respect to the shuttle after the tank is thrown is 1.9 m/s.

You might be interested in
Mary takes 6.0 seconds to run up a flight of stairs that is 102 meters long. if mary's weight is 87 newtons, what power has mary
pentagon [3]
Thank you for posting your question here at brainly. I hope the answer will help. Below are the choices that can be found elsewhere:

 <span>A. 1.5 * 10^3 Watts 
B. 7.3 * 10^2 Watts 
C. 3.5 * 10^2 Watts 
D. 2.5 * 10^2 Watts
</span>
 <span>Work = force*displacement = 10^2*87 = 8,700 joule 
Power = work/time = 8,700/6 = 1.45*10^3 (rounded up to 1.5 kw). The answer is A. </span>
3 0
2 years ago
Read 2 more answers
As in the video, we apply a charge +Q to the half-shell that carries the electroscope. This time, we also apply a charge –Q to t
Andreyy89

Answer:

Explanation:

When the positively charged half shell is brought in contact with the electroscope, its needle deflects due to charge present on the shell.

When the negatively charged half shell is brought in contact with the positively charged shell , the positive and negative charge present on each shell neutralises each other  .So both the shells lose their charges .The positive half shell also loses all its charges

When we separate the half shells , there will be no deflection  in the electroscope because both the shell have already lost their charges and they have become neutral bodies . So they will not be able to produce any deflection in the electroscope.

4 0
2 years ago
Read 2 more answers
A 150 g particle at x = 0 is moving at 8.00 m/s in the +x-direction. As it moves, it experiences a force given by Fx=(0.850N)sin
krok68 [10]

Answer:

9.98 m/s

Explanation:

The force acting on the particle is defined by the equation:

F=(0.850) sin (\frac{x}{2.00}) [N]

where x is the position in metres.

The acceleration can be found by using Newton's second law:

a=\frac{F}{m}

where

m = 150 g = 0.150 kg is the mass of the particle. Substituting into the equation,

a=\frac{0.850}{0.150}sin (\frac{x}{2.00})=5.67 sin(\frac{x}{2.00}) [m/s^2]

When x = 3.14 m, the acceleration is:

a=5.67 sin(\frac{3.14}{2.00})=5.67 m/s^2

Now we can find the final speed of the particle by using the suvat equation:

v^2-u^2=2ax

where

u = 8.00 m/s is the initial velocity

v is the final velocity

a=5.67 m/s^2

x = 3.14 m is the displacement

Solving for v,

v=\sqrt{u^2+2ax}=\sqrt{8.00^2+2(5.67)(3.14)}=9.98 m/s

And the speed is just the magnitude of the velocity, so 9.98 m/s.

4 0
2 years ago
If the magnitude of charges on these source charges is arranged in a descending order, which is the correct sequence?
bonufazy [111]
The source charges' magnitude is signified by the arrows pointing outward. The more arrows there are, the greater is its magnitude. This is because, each arrow represents an electrical force exerted by the source. When you add up all the arrows there is, the electrical force becomes even greater. The answer in descending order would be C > A > B > D.
6 0
2 years ago
Read 2 more answers
If a rock is thrown upward on the planet mars with a velocity of 11 m/s, its height (in meters) after t seconds is given by h =
Butoxors [25]
(a) 3.56 m/s 
(b) 11 - 3.72a 
(c) t = 5.9 s 
(d) -11 m/s  
For most of these problems, you're being asked the velocity of the rock as a function of t, while you've been given the position as a function of t. So first calculate the first derivative of the position function using the power rule. 
y = 11t - 1.86t^2 
y' = 11 - 3.72t 
Now that you have the first derivative, it will give you the velocity as a function of t. 
(a) Velocity after 2 seconds. 
y' = 11 - 3.72t 
y' = 11 - 3.72*2 = 11 - 7.44 = 3.56 
So the velocity is 3.56 m/s  
(b) Velocity after a seconds. 
y' = 11 - 3.72t 
y' = 11 - 3.72a  
So the answer is 11 - 3.72a  
(c) Use the quadratic formula to find the zeros for the position function y = 11t-1.86t^2. Roots are t = 0 and t = 5.913978495. The t = 0 is for the moment the rock was thrown, so the answer is t = 5.9 seconds.  
(d) Plug in the value of t calculated for (c) into the velocity function, so: 
y' = 11 - 3.72a
 y' = 11 - 3.72*5.913978495
 y' = 11 - 22
 y' = -11 
 So the velocity is -11 m/s which makes sense since the total energy of the rock will remain constant, so it's coming down at the same speed as it was going up.
3 0
2 years ago
Other questions:
  • Shelley gives her little sister a 5-meter head start in a bike race. The race ends 15 meters east from where Shelley started. If
    13·2 answers
  • You do 174 J of work while pulling your sister back on a swing, whose chain is 5.10 m long, until the swing makes an angle of 32
    8·1 answer
  • Consider a sign suspended on a boom that is supported by a cable, as shown. What is the proper equation to use for finding the n
    5·2 answers
  • Which formula can be used to calculate the horizontal displacement not of a horizontally launched projectile
    10·1 answer
  • A 100.0 mL sample of 1.020 M HCl is mixed with a 50.0 mL sample of 2.040 M NaOH in a Styrofoam cup. If both solutions were initi
    7·1 answer
  • A machine is designed to fill jars with 16 ounces of coffee. A consumer suspects that the machine is not filling the jars comple
    8·1 answer
  • Two objects attract each other gravitationally. If the mass of each object doubles, how does the gravitational force between the
    5·1 answer
  • A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coas
    12·1 answer
  • a block weighing (Fg) 50 N is resting on a steel table (us = 0.74). The minimum force to start this block moving is what N
    8·1 answer
  • Venn diagrams are used for comparing and contrasting topics. The overlapping sections show characteristics that the topics have
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!