The electrical potential energy of a charge q located at a point at potential V is given by

Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to

Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector:
Answer:
Apparent depth (Da) = 60.15 cm (Approx)
Explanation:
Given:
Distance from fish (D) = 80 cm
Find:
Apparent depth (Da)
Computation:
We know that,
Refractive index of water (n2) = 1.33
So,
Apparent depth (Da) = D(n1/n2)
Apparent depth (Da) = 80 (1/1.33)
Apparent depth (Da) = 60.15 cm (Approx)
Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.
Answer:
99.63 kg
Explanation:
From the force diagram
N = normal force on the worker from the surface of the roof
f = static frictional force = 560 N
θ = angle of the slope = 35
m = mass of the worker
W = weight of the worker = mg
W Cosθ = Component of the weight of worker perpendicular to the surface of roof
W Sinθ = Component of the weight of worker parallel to the surface of roof
From the force diagram, for the worker not to slip, force equation must be
W Sinθ = f
mg Sinθ = f
m (9.8) Sin35 = 560
m = 99.63 kg
Answer: Weight only.
Explanation: Mass is a measure of the amount of matter in an object. Weight is a measure of the gravitational force exerted on the material in a gravitational field. Mass and weight are proportional to each other, with the acceleration due to gravity as the proportionality constant.
If a rock is transported from the moon to the earth, the mass is constant for the object but the weight will depends on the locations of the object. The gravitational acceleration would change because the radius and mass of the Moon is different from the Earth.
Thus, the object (rock) has <em>mass, m</em> both on the surface of the Earth and the surface of the Moon; but it will <em>weight</em> much less on the surface of the Moon as the Moon's surface gravity is 1/6 of the Earth.