Answer:
Time period for first satellites 24.46 days and for second satellites 37.67 days
Explanation:
Given :
Distance of first satellites
m
Distance of second satellites
m
Distance of charon
m
Time period of charon
days
From the kepler's third law,
Square of the time period is proportional to the cube of the semi major axis.


For first satellites,


days
For second satellites,


days
Therefore, time period for first satellites = 24.46 days and for second satellites 37.67 days
Answer:
The Surface heat flux is -9205 W/m^2
Explanation:
Explanation is in the following attachment
Complete Question
If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time to expand to compensate for the blood pressure drop. If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mm of Hg (= 0.16 atm = 16 kP = 1.6 × 104 N/m2).
Answer:
The pressure at the brain is 
Explanation:
Generally is mathematically denoted as

Substituting
for
(the density) ,
for g (acceleration due to gravity) , 0.4m for h (the height )
We have that the pressure difference between the heart and the brain is

But the pressure of blood at the heart is given as

Now the pressure at the brain is mathematically evaluated as



The first problem cannot be solve because you did give the distance or length of the rope, because work = distance x force. i can only solve the the second problem. since the bucket is moving up then force due to gravity is going down, then the net force is:
Fnet = F1 - Fg
where Fg = mg
g is the accelaration due to gravity ( 9.81 m/s^2)
Fnet = 57.5 N - (3.9 kg)(9.81) N
Fnet = 19.24 N
ANSWER

EXPLANATION
Since the body is in equilibrium, total upward forces must equal total downward force.
Also the net horizontal forces acting on the body must be zero.
We need to resolve
into vertical and horizontal components.
The horizontal component is
.
The vertical component is
.
Equating the up force to the downward forces gives,
.
This implies that,
.

Also the horizontal forces must be equal.
.
Dividing equation (1) by equation (2) gives,
.


.
Therefore the given angle that
must make with the horizontal is approximately 35° to the nearest degree.