answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fomenos
2 years ago
10

While dragging a crate a workman exerts a force of 628 N. Later, the mass of the crate is increased by a factor of 3.8. If the w

orkman exerts the same force, how does the new acceleration compare to the old acceleration?
Physics
2 answers:
Delvig [45]2 years ago
6 0
Force applied = F = 628 N 
<span>Acceleration = a m/s² </span>
<span>Newton's 2nd law of motion : F = Ma </span>
<span> a = F/M -------- (1) </span>
<span>New mass of the crate = M1 = 3.8M kg </span>
<span>New acceleration = a1 = F/M1 = F/(3.8 M) ----- (2) </span>
<span>a1/a = {F/(3.8M)}/(F/M) = 1/3.8 = 10/38 = 5/19 ------- Answer</span>
Alja [10]2 years ago
5 0

Answer:

The acceleration would decrease by a factor of 3.8.

Explanation:

Force = mass x acceleration

F = ma

If the mass is increased by a factor of 3.8. New mass = 3.8 m

If the same force is exerted, then acceleration is inversely proportional to mass and it changes by:

\frac {3.8 m}{m} = \frac{a} {a'}\\  \Rightarrow a' = \frac {a} {3.8}

You might be interested in
An object has a position given by r = [2.0 m + (2.00 m/s)t] i + [3.0 m − (1.00 m/s^2)t^2] j, where quantities are in SI units. W
lidiya [134]

Answer: 1 m/s

Explanation:

We have an object whose position r is given by a vector, where the components X and Y are identified by the unit vectors i and j (where each unit vector is defined to have a magnitude of exactly one):

r=[2 m + (2 m/s) t] i + [3 m - (1 m/s^{2})t^{2}] j

On the other hand, velocity is defined as the variation of the position in time:

V=\frac{dr}{dt}

This means we have to derive r:

\frac{dr}{dt}=\frac{d}{dt}[2 m + (2 m/s) t] i + \frac{d}{dt}[3 m - (1 m/s^{2})t^{2}] j

\frac{dr}{dt}=(2 m/s) i - (\frac{1}{2} m/s^{2} t) j This is the velocity vector

And when t=2s the velocity vector is:

\frac{dr}{dt}=(2 m/s) i - (\frac{1}{2} m/s^{2} (2 s)) j

\frac{dr}{dt}=2 m/s i - 1m/s j This is the velocity vector at 2 seconds

However, the solution is not complete yet, we have to find the module of this velocity vector, which is the speed S:

S=\sqrt {-1 m/s j + 2 m/s i}

S=\sqrt {1 m/s}

Finally:

S=1 m/s This is the speed of the object at 2 seconds

6 0
2 years ago
A chair of mass 30.0 kg is at rest on a horizontal floor. The floor is not frictionless. You push on the chair with a force of 8
miv72 [106K]
First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.

To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N

Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.

Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.

Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N

You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc
7 0
2 years ago
Read 2 more answers
The PVT behavior of a certain gas is described by the equation of state: P(V − b) = RT where b is a constant. If in addition CV
alexdok [17]

Answer:

shown in the attachment

Explanation:

The detailed step by step and necessary mathematical application is as shown in the attachment.

6 0
2 years ago
An early submersible craft for deep-sea exploration was raised and lowered by a cable from a ship. When the craft was stationary
Assoli18 [71]

Answer:

The tension in the cable when the craft was being lowered to the seafloor is 4700 N.

Explanation:

Given that,

When the craft was stationary, the tension in the cable was 6500 N.

When the craft was lowered or raised at a steady rate, the motion through the water added an 1800 N.

The drag force of 1800 N will act in the upward direction. As it was lowered or raised at a steady rate, so its acceleration is 0. As a result, net force is 0. So,

T + F = W

Here, T is tension

F = 1800 N

W = 6500 N

Tension becomes :

T=W-F\\\\T=6500-1800\\\\T=4700\ N

So, the tension in the cable when the craft was being lowered to the seafloor is 4700 N.

7 0
2 years ago
Think about how geothermal energy is captured and used. Explain how geothermal energy shows the flow of thermal energy from hot
kumpel [21]

Answer:

People can capture geothermal energy through: Geothermal power plants, which use heat from deep inside the Earth to generate steam to make electricity. Geothermal heat pumps, which tap into heat close to the Earth's surface to heat water or provide heat for buildings

When the weather is cold, the water or refrigerant heats up as it travels through the part of the loop that's buried underground. Once it gets back above ground, the warmed water or refrigerant transfers heat into the building. The water or refrigerant cools down after its heat is transferred.

8 0
1 year ago
Other questions:
  • Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
    8·1 answer
  • A small lab cart and one of larger mass collide and rebound off each other. Which of them has the greater average force on it du
    12·1 answer
  • A roller of radius 12.5 cm turns at 14 revolutions per second. What is the linear velocity of the roller in meters per second?
    11·2 answers
  • A floating leaf oscillates up and down two complete cycles in one second as a water wave passes by. The wave's wavelength is 10
    12·1 answer
  • Compare these two collisions of a PE student with a wall.
    15·1 answer
  • 16. A 7500 kg 18-wheeler traveling at 20 m/s exits onto the runaway truck ramp on the freeway.
    5·1 answer
  • . A long 10-cm-diameter steam pipe whose external surface temperature is 110oC passes through some open area that is not protect
    8·2 answers
  • UDAY WAS TOLD TO PUT SOME CONTAINERS IN ONE OF THE COLD STORES AT WORK. THE LABLES ON THE CONTAINERS READ STORE BELOW -5 C.THERE
    13·1 answer
  • If a sound with frequency fs is produced by a source traveling along a line with speed vs. If an observer is traveling with spee
    13·1 answer
  • A transverse standing wave is set up on a string that is held fixed at both ends. The amplitude of the standing wave at an antin
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!