Answer:
Part a)

Part b)

Part c)

Part d)

Part e)

Part f)

Explanation:
Part a)
As we know that the maximum angle deflected by the pendulum is

so the maximum height reached by the pendulum is given as

so we will have



now gravitational potential energy of the pendulum is given as



Part b)
As we know that there is no energy loss while moving upwards after being stuck
so here we can use mechanical energy conservation law
so we have




Part c)
now by momentum conservation we can say



Part d)
Work done by the bullet is equal to the change in kinetic energy of the system
so we have



Part e)
recoil speed of the gun can be calculated by momentum conservation
so we will have



Part f)
Total energy released in the process of shooting of gun



Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
Hertz is a measurement of the frequency that a wave is occurring.
Answer:
Bank angle = 35.34o
Explanation:
Since the road is frictionless,
Tan (bank angle) = V^2/r*g
Where V = speed of the racing car in m/s, r = radius of the arc in metres and g = acceleration due to gravity in m/s^2
Tan ( bank angle) = 40^2/(230*9.81)
Tan (bank angle) = 0.7091
Bank angle = tan inverse (0.7091)
Bank angle = 35.34o
#1
so mass number = 238
mass number = protons + neutrons
given that
neutrons = 146
238 = protons + 146
protons = 92
#2

so mass number = 241
mass number = protons + neutrons
given that
Protons = 94
241 = 94 + neutrons
neutrons = 147
#3

A = mass number
Protons = 90
Neutrons = 137
A = protons + Neutrons
A = 90 + 137 = 227