answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
2 years ago
9

A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electri

c field along the axis of the rod at a point 42.0 cm from its center.

Physics
1 answer:
Vlada [557]2 years ago
8 0

Answer:

-1.4x10^6N/C

Explanation:

Pls see attached file

You might be interested in
A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electri
Vlada [557]

Answer:

-1.4x10^6N/C

Explanation:

Pls see attached file

8 0
2 years ago
Suppose the rocket is coming in for a vertical landing at the surface of the earth. The captain adjusts the engine thrust so tha
Valentin [98]

Answer:

R= 78.32 N

Explanation:

Given that

Acceleration ,a= 2.05 m/s²

Mass , m = 6.5 kg

The force due to acceleration

F= mass x Acceleration

F=  ma

F= 6.5 x 2.05 N

F= 13.32 N

The force due to weight

F' = m g

F' = 6.5 x 10 N             ( take g= 10 m/s²)

F'= 65 N

Therefore the net total force will be summation of force due to weight and force due to acceleration

R= F + F'

R= 65 + 13.32 N

R= 78.32 N

5 0
2 years ago
A group of students collected the data shown below while attempting to measure the coefficient of static friction (of course, it
anzhelika [568]

Answer:

0.130

Explanation:

From the given data, the coefficient of static friction for each trial are:

1. 0.053

2. 0.081

3. 0.118

4. 0.149

5. 0.180

6. 0.198

The sum of the coefficient of static friction = 0.053 + 0.081 + 0.118 + 0.149 + 0.180 + 0.198

                                              = 0.779

So that;

the average coefficient of static friction = \frac{sum of coefficient of static friction}{number of trials}

                                              = \frac{0.779}{6}

                                              = 0.12983

The average coefficient of static friction is 0.130

8 0
1 year ago
Water, initially saturated vapor at 4 bar, fills a closed, rigid container. The water is heated until its temperature is 360°C.
salantis [7]

Explanation:

Using table A-3, we will obtain the properties of saturated water as follows.

Hence, pressure is given as p = 4 bar.

u_{1} = u_{g} = 2553.6 kJ/kg

v_{1} = v_{g} = 0.4625 m^{3}/kg

At state 2, we will obtain the properties. In a closed rigid container, the specific volume will remain constant.

Also, the specific volume saturated vapor at state 1 and 2 becomes equal. So, v_{2} = v_{g} = 0.4625 m^{3}/kg

According to the table A-4, properties of superheated water vapor will obtain the internal energy for state 2 at v_{2} = v_{g} = 0.4625 m^{3}/kg and temperature T_{2} = 360^{o}C so that it will fall in between range of pressure p = 5.0 bar and p = 7.0 bar.

Now, using interpolation we will find the internal energy as follows.

 u_{2} = u_{\text{at 5 bar, 400^{o}C}} + (\frac{v_{2} - v_{\text{at 5 bar, 400^{o}C}}}{v_{\text{at 7 bar, 400^{o}C - v_{at 5 bar, 400^{o}C}}}})(u_{at 7 bar, 400^{o}C - u_{at 5 bar, 400^{o}C}})

     u_{2} = 2963.2 + (\frac{0.4625 - 0.6173}{0.4397 - 0.6173})(2960.9 - 2963.2)

                   = 2963.2 - 2.005

                   = 2961.195 kJ/kg

Now, we will calculate the heat transfer in the system by applying the equation of energy balance as follows.

      Q - W = \Delta U + \Delta K.E + \Delta P.E ......... (1)

Since, the container is rigid so work will be equal to zero and the effects of both kinetic energy and potential energy can be ignored.

            \Delta K.E = \Delta P.E = 0

Now, equation will be as follows.

           Q - W = \Delta U + \Delta K.E + \Delta P.E

           Q - 0 = \Delta U + 0 + 0

           Q = \Delta U

Now, we will obtain the heat transfer per unit mass as follows.

          \frac{Q}{m} = \Delta u

         \frac{Q}{m} = u_{2} - u_{1}

                      = (2961.195 - 2553.6)

                      = 407.595 kJ/kg

Thus, we can conclude that the heat transfer is 407.595 kJ/kg.

4 0
1 year ago
A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
erastovalidia [21]

Answer:

407 steps

Explanation:

From the question,

P = mgh/t........... Equation 1

Where P = power, m = mass, g = acceleration due to gravity, h = height, t = time.

Make h the subject of the equation

h = Pt/mg............. Equation 2

Given: P = 746 W, t = 1 minute = 60 seconds, m = 70 kg.

Constant: g = 9.8 m/s²

Substitute into equation 2

h = 746(60)/(70×9.8)

h = 44760/686

h = 65.25 m

h = 6525 cm

number of steps = 6525/16

number of steps = 407 steps

6 0
1 year ago
Other questions:
  • a 2 meter tall astronaut standing on mars drops her glasses from her nose. how long will the astronaut have before he hits the g
    13·1 answer
  • a light bulb is 4.1 m from a surface. how much luminous flux must the bulb produce if the illuminance required is 22 lx?
    12·1 answer
  • A blacksmith heats a 1,540 g iron horseshoe to a temperature of 1445°c before dropping it into 4,280 g of water at 23.1°c. if th
    6·1 answer
  • On an ice skating rink, a girl of mass 50 kg stands stationary, face to face with a boy of mass 80 kg. The children push off of
    15·2 answers
  • An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m.how much work
    5·1 answer
  • A uniform magnetic field of 0.50 T is directed along the positive x axis. A proton moving with a speed of 60 km s enters this fi
    11·1 answer
  • a ball on a string makes 30.0 revolutions in 14.4s, in a circle of radius 0.340m. what is its period.(unit=s)
    12·1 answer
  • Diffraction spreading for a flashlight is insignificant compared with other limitations in its optics, such as spherical aberrat
    7·1 answer
  • To penetrate armor, a projectile's point concentrates force in a small area, creating a stress large enough that the armor fails
    5·1 answer
  • In Michael Johnson's world-record 400 m sprint, he ran the first 100 m in 11.20 s; then he reached the 200 m mark after a total
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!