answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulsSmile [24]
2 years ago
7

Diffraction spreading for a flashlight is insignificant compared with other limitations in its optics, such as spherical aberrat

ions in its mirror. To show this, calculate the minimum angular spreading in rad of a flashlight beam that is originally 5.85 cm in diameter with an average wavelength of 580 nm
Physics
1 answer:
lyudmila [28]2 years ago
5 0

Answer:

 \theta_{min} = 1.21 \times 10^{-5}\ rad

Explanation:

given,

diameter of the beam (d)= 5.85 cm

                                        = 0.0585 m

average wavelength of the(λ) = 580 n m

angle of of spreading = ?

according to the Rayleigh Criterion the minimum angular spreading, for a circular aperture, is

                \theta_{min} = 1.22\ \dfrac{\lambda}{d}

                \theta_{min} = 1.22\ \dfrac{580 \times 10^{-9}}{0.0585}

                \theta_{min} = 1.22\times 9.145 \times 10^{-6}

               \theta_{min} = 1.21 \times 10^{-5}\ rad

the minimum angle of spreading is \theta_{min} = 1.21 \times 10^{-5}\ rad

You might be interested in
Consider a bicycle wheel to be a ring of radius 30 cm and mass 1.5 kg. Neglect the mass of the axle and sprocket. If a force of
Charra [1.4K]

To solve the problem it is necessary to apply the Torque equations and their respective definitions.

The Torque is defined as,

\tau = I \alpha

Where,

I=Inertial Moment

\alpha = Angular acceleration

Also Torque with linear equation is defined as,

\tau = F*d

Where,

F = Force

d= distance

Our dates are given as,

R = 30 cm = 0.3m

m = 1.5 kg

F = 20 N

r = 4.0 cm = 0.04 m

t = 4.0s

Therefore matching two equation we have that,

d*F = I\alpha

For a wheel the moment inertia is defined as,

I= mR2, replacing we have

d*F= \frac{mR^2a}{R}

d*F= mRa

a = \frac{rF}{ mR}

a = \frac{0.04*20}{1.5*0.3}

a=1.77 m/s^2

Then the velocity of the wheel is

V = a *t \\V=1.77*4 \\V=7.11 m/s

Therefore the correct answer is D.

4 0
2 years ago
The banking angle in a turn on the Olympic bobsled track is not constant, but increases upward from the horizontal. Coming aroun
zlopas [31]

Answer:

the curve inclination is increased so that a weight component helps keep the car on track

Explanation:

In the sledging competition these devices go at quite high speeds over 100 km/h, so when reaching the curves the friction force is not enough to keep the car on the track. For this reason,  the curve inclination is increased so that a weight component helps keep the car on track.

In general we can solve Newton's second law for this case, with the condition of no friction, it is found that

   V² = r g tan θ

 Where V is the maximum velocity, r is the radius of the curve a, θ is the angle of the inclination

8 0
2 years ago
Consider N non-interacting diatomic molecules stuck on a metal surface. Each molecule can either lie flat on the surface, in whi
Art [367]

Answer:

Detailed solution given in diagram

7 0
2 years ago
A slingshot can project a pebble at a speed as high as 38.0 m/s. (a) If air resistance can be ignored, how high (in m) would a p
kipiarov [429]

Answer:

73.67 m

Explanation:

If projected straight up, we can work in 1 dimension, and we can use the following kinematic equations:

y(t) = y_0 + V_0 * t + \frac{1}{2} a t^2

V(t) = V_0 + a * t,

Where y_0 its our initial height, V_0  our initial speed, a the acceleration and t the time that has passed.

For our problem, the initial height its 0 meters, our initial speed its 38.0 m/s, the acceleration its the gravitational one ( g = 9.8 m/s^2), and the time its uknown.

We can plug this values in our equations, to obtain:

y(t) =  38 \frac{m}{s} * t - \frac{1}{2} g t^2

V(t) = 38 \frac{m}{s} - g * t

note that the acceleration point downwards, hence the minus sign.

Now, in the highest point, velocity must be zero, so, we can grab our second equation, and write:

0 m = 38 \frac{m}{s} - g * t

and obtain:

t = 38 \frac{m}{s} / g

t = 38 \frac{m}{s} / 9.8 \frac{m}{s^2}

t = 3.9 s

Plugin this time on our first equation we find:

y = 38 \frac{m}{s} * 3.9 s - \frac{1}{2} 9.8 \frac{m}{s^2} (3.9 s)^2

y=73.67 m

6 0
2 years ago
The electric potential in a region that is within 2.00 mm of the origin of a rectangular coordinate system is given by V=Axl+Bym
Fynjy0 [20]

Answer:

Given the potential, V = Ax^l+By^m+Cz^n+D

The components of the electric field are:

E_x = \frac{-dV}{dx} = -Alx^l^-^1

E_y = \frac{-dV}{dy} = - Bmy^m^-^1

E_z = \frac{-dV}{dz} = - nCzn^n^-^1

Let's calculate the potential difference for all given points.

V(0, 0, 0) = 10V => Ax^l+By^m+Cz^n+D = 10

=> D = 10

V(1, 0, 0) = 4V => A + 10 = 4

Solving for A, we have:

A = 4 - 10

A = -6

V(0, 1, 0) = 6V => B + 10 = 6

Solving for B, we have:

B = 6 - 10

B = -4

V(0, 0, 1) = 8V => C + 10 = 4

Solving for C, we have:

C = 8 - 10

C = -2

For all given points, let's calculate the magnitude of electric field as follow:

E_x (1, 0, 0) = 16 => - Alx^l^-^1 = 16

Al = -16

Solving for l, we have:

l = \frac{-16}{A}

From above, A = -6

l = \frac{-16}{-6}

l = \frac{8}{3}

E_y (0, 1, 0) = 16=> Bmy^m^-^1 = 16

Bm = -16

Solving for m, we have:

m = \frac{-16}{A}

From above, B = -4

m = \frac{-16}{-4}

m = 4

E_y (0, 0, 1) = 16=> nCz^n^-^1 = 16

nC = - 16

Solving for n, we have:

n = \frac{-16}{C}

From above, C = -2

n = \frac{-16}{-2}

n = 8

4 0
2 years ago
Other questions:
  • A university is planning to send an optical telescope into orbit. stuents attending the university will be able to view which of
    6·2 answers
  • A ray diagram is shown. Which statement best describes the diagram?
    6·1 answer
  • A baking dish is removed from a hot oven and placed on a cooling rack. As the dish cools down to 35 C from 175 C, its net radian
    7·1 answer
  • A rocket sled accelerates at 21.5 m/s^2 for 8.75 s. (a) What's its velocity at the end of that time? (b) How far has it traveled
    8·1 answer
  • platform diving in the olympic games takes place at two heights: 5 meters and 10 meters. What is the velocity of a diver enterin
    5·1 answer
  • An 18-cm-long bicycle crank arm, with a pedal at one end, is attached to a 20-cm-diameter sprocket, the toothed disk around whic
    12·1 answer
  • A parallel-plate capacitor with a 4.9 mm plate separation is charged to 57 V . Part A With what kinetic energy, in eV, must a pr
    13·1 answer
  • The oscilloscope can be thought of as a plotting machine. What is plotted on the a axis? What is plotted on the y axis? If you t
    5·1 answer
  • An extremely long thin wire carries a uniform linear charge density of 358 nC/m. Find the potential difference between points 5.
    6·1 answer
  • Which type of reaction does this diagram represent? A small ball heads toward a large circle labeled superscript 235 upper U. An
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!