Because the air inside the tires is kept at high pressure.
In fact, the force applied by the tires upwards to counter-balance the weight of the car (pushing downwards) is

where p is the pressure of the air inside the tires and A is the area of contact between the tire and the car. Therefore, a higher pressure means a larger force F, and eventually if the pressure p is higher enough the force F will be large enough to counterbalance the weight of the car.
Answer:
(a) Rm = 268.4 m
(b) f = 6
Explanation:
The horizontal range of a projectile is given by the following formula:
R = V₀² Sin 2θ/g
(a)
For moon:
R = Range on moon = Rm
V₀ = Launch Speed = 28 m/s
θ = Launch Angle = 17°
g = acceleration due to gravity on moon = (9.8 m/s²)/6 = 1.63 m/s²
Therefore,
Rm = (28 m/s)²Sin (2*17°)/(1.63 m/s²)
<u>Rm = 268.4 m</u>
(b)
For Earth:
R = Range on Earth = Re
V₀ = Launch Speed = 28 m/s
θ = Launch Angle = 17°
g = acceleration due to gravity on Earth = 9.8 m/s²
Therefore,
Re = (28 m/s)²Sin (2*17°)/(9.8 m/s²)
Re = 44.7 m
Therefore.
f = Rm/Re = 268.4 m/44.7 m
<u>f = 6</u>
Answer:
The distance the piece travel in horizontally axis is
L=3.55m
Explanation:





Now the angular velocity is the blade speed so:
assuming no air friction effects affect blade piece:
time for blade piece to fall to floor

Now is the same time the piece travel horizontally

blade piece travels HORIZONTALLY = (24.5)(0.397) = 9.73 m ANS
Answer:
Stars live to long to be observed from birth to death
Explanation:
The life expectancy of a star are millions of years compared to that of human thereby making it difficult to study the life path and activities of the stars till the point of extinction. This brought about scientist studying different star with different ages in order to answer their burning question on formation of stars which is called the figuring out process(stellar activity) and this makes it difficult and tedious.
I think the correct answer from the choices listed above is the second option. Based on this information, we can say that there are more molecules in a gram of water since more energy is required to raise the temperature 1 gram of water than to raise the temperature of 1 gram of ethanol.