Answer:
Speed, mass and acceleration
Explanation:
A scalar quantity is a quantity that has only magnitude but no direction while a vector quantity has both magnitude and direction.
According to the question, the row that has two scalars and one vector is speed, mass and acceleration.
The two scalars in this row are speed and mass while the vector quantity there is the acceleration.
Acceleration has direction since it possess direction. A body accelerating will do so in a particular direction. Speed and mass doesn't possess any direction. Mass only specify the magnitude of the body but no clue as to which direction is the body moving towards.
Speed also only specify the
total distance covered with respect to time but not the direction of the direction.
Answer:
μ = 0.408
Explanation:
given,
speed of the automobile (u)= 20 m/s
distance = 50 m
final velocity (v) = 0 m/s
kinetic friction = ?
we know that,
v² = u² + 2 a s
0 = 20² + 2 × a × 50

a = 4 m/s²
We know
F = ma = μN
ma = μ mg
a = μ g


μ = 0.408
hence, Kinetic friction require to stop the automobile before it hit barrier is 0.408
A perpetual motion machine is (as the name implies) a machine that moves perpetually; it never stops. Ever. So if you created one today and set it going, it would keep on going until the Big Freeze<span>. Calling that “a long time” is an understatement of epic proportions</span>
Answer:
The airplane should release the parcel
m before reaching the island
Explanation:
The height of the plane is
, and its speed is v=150 m/s
When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is
[1]
And the distance X is
x = V.t [2]
Being t the time elapsed since the release of the parcel
If we isolate t from the equation [1] and replace it in equation [2] we get

Using the given values:

x =
m
Answer:
Total Work done =0.65 joule
Explanation:
Work done is given Mathematically as
W=F *d
Where w=work done in joules
F=applied force
d= distance moved
The work done to move the toy accros the first meter is
W1=0.5*1
W1=0.5joule
The work done to move the toy across the next 2m at an angle of 30° is
.W2=0.5*2cos30
W2=0.5*2*0.154
W2=0.154joule
Hence total work done is
W1+W2=0.5+0.154
Total Work done =0.65 joule