answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stellarik [79]
1 year ago
9

Some hydrogen gas is enclosed within a chamber being held at 200∘c with a volume of 0.0250 m3. the chamber is fitted with a mova

ble piston. initially, the pressure in the gas is 1.50×106pa (14.8 atm). the piston is slowly extracted until the pressure in the gas falls to 0.950×106pa. what is the final volume v2 of the container? assume that no gas escapes and that the temperature remains at 200∘c. enter your answer numerically in cubic meters.
Physics
1 answer:
Mrac [35]1 year ago
4 0

Answer: The final volume V₂ of the container is  0.039 m³.

Explanation:

Since the temperature is constant, the gas would expand isothermally.

For isothermal expansion,

P₁V₁=P₂V₂

Where, P₁ and P₂ are the initial and final pressure and V₁ and V₂ are initial and final volume.

It is given that:

V₁ = 0.0250 m³

P₁ = 1.5 × 10⁶ Pa

P₂ = 0.950 × 10⁶ Pa

V₂ = ?

⇒ 1.5 × 10⁶ Pa × 0.0250 m³ = 0.950 × 10⁶ Pa × V₂

⇒V₂ = 0.039 m³

Hence, the final volume V₂ of the container is  0.039 m³.

You might be interested in
Water at 20°C flows by gravity through a smooth pipe from one reservoir to a lower one. The elevation difference is 60 m. The pi
Serga [27]

Answer:

Flow Rate = 80 m^3 /hours  (Rounded to the nearest whole number)

Explanation:

Given

  • Hf = head loss
  • f = friction factor
  • L = Length of the pipe = 360 m
  • V = Flow velocity, m/s
  • D = Pipe diameter = 0.12 m
  • g = Gravitational acceleration, m/s^2
  • Re = Reynolds's Number
  • rho = Density =998 kg/m^3
  • μ = Viscosity = 0.001 kg/m-s
  • Z = Elevation Difference = 60 m

Calculations

Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)

The energy equation for this system will be,

Hp = Z + Hf

The other three equations to solve the above equations are:

Re = (rho*V*D)/ μ

Flow Rate, Q = V*(pi/4)*D^2

Power = 15000 W = rho*g*Q*Hp

1/f^0.5 = 2*log ((Re*f^0.5)/2.51)

We can iterate the 5 equations to find f and solve them to find the values of:

Re = 235000

f = 0.015

V = 1.97 m/s

And use them to find the flow rate,

Q = V*(pi/4)*D^2

Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours

7 0
1 year ago
An object is released from rest at a height h. During the final second of its fall, it traverses a distance of 38m. Determine th
nadezda [96]
Gravity is 9.8 m/s² means means every second distance travelled
increases by the distance in the previous second plus an extra 9.8m
during last second it fell 38m
previous second dist = 38 - 9.8m = 28.2
previous second = 28.2 - 9.8m = 18.4m
distance left = 18.4 - 9.8m = 8.6m
(so actually less than a second as it only travelled 8.6m)
total distance h = 38 + 28.2 + 18.4 + 8.6 = 93.2m

hope this is what is required

6 0
2 years ago
Read 2 more answers
If we were to illuminate them only with light from the Balmer transition considered above, would the solar panels produce a curr
Ugo [173]

Answer:

No

Explanation:

The reason why no current is produced are basically that, the wavelengths of light in the Balmer transition are reflected, not absorbed in solar panels, hence no current is produced.

The Balmer series consists of lines in the visible spectrum. It corresponds to emission of a photon of light when electrons descend from higher energy levels to the n=2 level in the hydrogen spectrum. The various wavelengths in the Balmer series can be separated by a prism since they are all in the visible region of the electromagnetic spectrum.

In solar panels, light corresponding to the wavelengths in the Balmer series is merely reflected by the panel and not absorbed. Since light is not absorbed, no current can be produced when the panel is irradiated with light corresponding to the wavelengths in the Balmer series.

6 0
1 year ago
On a hypothetical scale X The ice point is 40° and steam point is 120°.
arlik [135]

Answer:

The reading of Y is -10°.

Explanation:

For scale X, the ice point is 40° and steam point is 120°.

Difference between the two extremes for scales X = 120 - 40 = 80

For scale X, the ice point and steam points are -30° and 130° respectively.

Difference between the two extremes for scales X = 130 - (-30) = 160

Comparing both scales:

One unit of scale X = x

One unit of scale Y = y

Scale X has 80 divisions while scale Y has 160

80x = 160y

x = 2y

50° in scale X = 10x + ice point in X scale

10 divisions in Y scale = 20y

Reading of Y scale = ice point of Y + 20y

= -30° + 20°

= -10°

7 0
1 year ago
A small town has decided to forego the use of electrical power and send energy through town via mechanical waves on ropes. They
mojhsa [17]

Answer:

the required frequency of waves is 2.066 Hz

Explanation:

Given the data in the question;

μ = 1.50 kg/m

T = 6000 N

Amplitude A = 0.500 m

P = 2.00 kW = 2000 W

we know that, the average power transmit through the rope can be expressed as;

p = \frac{1}{2}vμω²A²

p = \frac{1}{2}√(T/μ)μω²A²

so we solve for ω

ω² = 2P / √(T/μ)μA²

we substitute

ω² = 2(2000) / √(6000/1.5)(1.5)(0.500)²

ω² = 4000 / 23.71708

ω² = 168.65

(2πf)² = ω²

so

(2πf)² = 168.65

4π²f² = 168.65

f² = 168.65 / 4π²

f² = 4.27195

f = √4.27195

f = 2.066 Hz

Therefore, the required frequency of waves is 2.066 Hz

3 0
1 year ago
Other questions:
  • Two point charges of values +3.4 and +6.6 μc are separated by 0.10 m. what is the electrical potential at the point midway betwe
    11·1 answer
  • On an ice skating rink, a girl of mass 50 kg stands stationary, face to face with a boy of mass 80 kg. The children push off of
    15·2 answers
  • You travel in a circle, whose circumference is 8 kilometers, at an average speed of 8 kilometers/hour. If you stop at the same p
    9·2 answers
  • A spaceship of frontal area 10 m2 moves through a large dust cloud with a speed of 1 x 106 m/s. The mass density of the dust is
    6·1 answer
  • A 3.0-kg brick rests on a perfectly smooth ramp inclined at 34° above the horizontal. The brick is kept from sliding down the pl
    13·1 answer
  • A measuring microscope is used to examine the interference pattern. It is found that the average distance between the centers of
    7·1 answer
  • A beam of electrons is sent horizontally down the axis of a tube to strike a fluorescent screen at the end of the tube. On the w
    6·1 answer
  • Young athlete has a mass of 42 kg one day there is no wind shear and hundred metre race in 14.2 second a sketch graph not in ske
    10·2 answers
  • Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
    8·1 answer
  • If the ball is 0.60 mm from her shoulder, what is the tangential acceleration of the ball? This is the key quantity here--it's a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!