answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VMariaS [17]
2 years ago
13

The manometer shown in fig. 2 contains water and kerosene. with both tubes open to the atmosphere, the free-surface elevations d

iffer by h = 20.0 mm. determine the elevation difference when a pressure of 98.0 pa (gage) is applied to the right tube. (hint: when the gage pressure is applied to the right tube, the water in the right tube is displaced downward by the same distance that the kerosene in the left tube is displaced upward)
Physics
1 answer:
ozzi2 years ago
6 0
The solution for this problem is: In the figure, you now know that total length of the kerosene column
So at x – xPatm + Pkg(H0 th) = Pa + Pwgh
Now H0 + h = 20 + 91.1 mm = 111.1 mm
Therefore = Pkg 0.1111 – P2g= h = 56 x 0.111 – 98 / 1000 x 9.81= 0.081 m or 81 mn
Therefore H0 = 111.1 - 81= 30.1 mm
You might be interested in
Four students measured the acceleration of gravity. The accepted value for their location is 9.78m/s2. Which student’s measureme
Lisa [10]

On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2 .</u>

<u>Explanation:</u>

Here, we have Four students measured the acceleration of gravity. The accepted value for their location is 9.78m/s2. Let's calculate which student’s measurement has the largest percent error :

<u>A. Student 4: 9.61 m/s2 </u>

Percentage of error  = \frac{9.78-9.61}{9.78} (100) = 1.738% %.

<u>B. Student 3: 9.88 m/s2 </u>

Percentage of error  = \frac{9.88-9.78}{9.78} (100) = 1.022% %.

<u>C. Student 2: 9.79 m/s2 </u>

Percentage of error  = \frac{9.79-9.78}{9.78} (100) = 0.1022%% .

<u>D. Student 1: 9.78 m/s2</u>

Percentage of error  = \frac{9.78-9.61}{9.78} (100) = 0%% .

On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2 .</u>

4 0
2 years ago
A horizontal uniform meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging from it at the 20-cm mark and a 0.30
ElenaW [278]

Answer:

70 cm

Explanation:

0.5 kg at 20 cm

0.3 kg at 60 cm

x = Distance of the third 0.6 kg mass

Meter stick hanging at 50 cm

Torque about the support point is given by (torque is conserved)

0.5(50-20)=0.3(60-50)+0.6x\\\Rightarrow x=\dfrac{0.5(50-20)-0.3(60-50)}{0.6}\\\Rightarrow x=20\ cm

The position of the third mass of 0.6 kg is at 20+50 = 70 cm

7 0
2 years ago
Read 2 more answers
Given a triangle with sides X = 6.35 cm and Y = 12.25 cm with an angle of 90 degrees between them, find the length of the hypote
never [62]

Answer:

the hypotenuse = 13.78 cm

Ф = 27.44°

θ = 62.56°

explanation:

4 0
2 years ago
A student releases a block of mass m from rest at the top of a slide of height h1. The block moves down the slide and off the en
Nina [5.8K]

Answer:

B)   d = √  ( 4 h₂ ( H - 2h₂))

Explanation:

A) 1) If the height of the slide is very small, there is no speed to leave the table, therefore do not recreate almost any horizontal distance

2) If the height is very small downwards, it touches the earth a little and the horizon is small,

B) to find an equation for horizontal distance (d)

We must maximize the speed at the bottom of the slide let's use energy

Starting point Higher

         Em₀ = U = m g h₁

Final point. Lower (slide bottom)

           Emf = K + U = ½ m v² + m gh₂

As there is no friction the energy is conserved

            mgh₁ = ½ m v² + mgh₂

            v² = 2 g (h₁-h₂)

This is the speed with which the block leaves the table, bone is the horizontal speed (vₓ)

The distance traveled when leaving the table can be searched with kinematics, projectile launch

          x = v₀ₓ t

         y =  t - ½ g t²

The height is the height of the table (y = h₂), as it comes out horizontally the vertical speed is zero

        t = √ 2h₂ / g

We substitute in the other equation

        d = √ (2g (h₁-h₂))  √ 2h₂ / g

        d = √ (4 h₂ (h₁-h₂))

        H = h₁ + h₂

        h₁ = H -h₂

        d = √  ( 4 h₂ ( H - 2h₂))

Explanation:

7 0
2 years ago
A man has a mass of 66kg on earth. what is his weight?
klasskru [66]
So 1 kg = 2.2 pounds.
66kg | 2.2 pounds
--------| ------------------
| 1kg

I set it up like this. The 66 kg crosses out with the 1kg. So you multiply the top 66 x 2.2 = 145.2 pounds
7 0
2 years ago
Other questions:
  • A lawn sprinkler sprays water 8 feet at full pressure as it rotates 360 degrees. if the water pressure is reduced by 50%, what i
    9·1 answer
  • A force of 20 N acts on a rocket for 350 s, causing the rocket's velocity to increase. Calculate the impulse of the force and by
    7·1 answer
  • Is it possible for two pieces of the same metal to have different recrystallization temperatures? Is it possible for recrystalli
    12·1 answer
  • flat block is pulled along a horizontal flat surface by a horizontal rope perpendicular to one of the sides. The block measures
    15·2 answers
  • Two Polaroids are aligned so that the initially unpolarized light passing through them is a maximum. At what angle should one of
    5·1 answer
  • At its lowest setting a centrifuge rotates with an angular speed of ω1 = 250 rad/s. When it is switched to the next higher setti
    11·1 answer
  • 8. The resistance of a bagel toaster is 14 Ω. To prepare a bagel, the toaster is operated for one minute from a 120-V outlet. Ho
    9·2 answers
  • Question 1
    12·1 answer
  • A professional boxer hits his opponent with a 1025 N horizontal blow that lasts 0.150 s. The opponent's total body mass is 116 k
    7·1 answer
  • A 0.3 mm long invertebrate larva moves through 20oC water at 1.0 mm/s. You are creating an enlarged physical model of this larva
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!