answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
1 year ago
5

The helicopter in the drawing is moving horizontally to the right at a constant velocity. The weight of the helicopter is W=4900

0 N. The lift force L generated by the rotating blade makes an angle of 21.0° with respect to the vertical. (a) What is the magnitude of the lift force? (b) Determine the magnitude of the air resistance R that opposes the motion.
Physics
1 answer:
Sedaia [141]1 year ago
3 0

Answer:

(a) The magnitude of the lift force is 52144.71 N, approximately.

(b) The magnitude of the air resistance force opposing the movement is 17834.54 N, approximately.

Explanation:

Since the helicopter is moving horizontally at a constant velocity, we can assume that the net force acting on it is zero, then

(a) in the vertical direction we have

L\cos(20\deg)-W=0\\L=\frac{W}{\cos(20\deg)}=\frac{49000 N}{\cos(20\deg)}\approx \mathbf{52144.71 N}.

(b) Now horizontally,

L\sin(20\deg)-R=0\\R=L\sin(20\deg)=52144.71 N\times \sin(20\deg) \approx \mathbf{17834.54 N}.

You might be interested in
Metals are used in many products because of the characteristic properties that most metals have. Which product requires the high
labwork [276]
<span>The answer is mirrors. Mirrors are made by applying a metal thin layer on the back surface of a transparent substrat, typically glass. The metal layer in the antiquity was bronze, mercury and later silver whose luster gave the reflective property to the mirror.</span>
3 0
1 year ago
Read 2 more answers
The ammeter displays a reading of 0.10 A. Calculate the potential difference across the 45 Ω resistor.
NeX [460]

Answer:

V = 45× 0.10= 4.5 volt

...........

5 0
1 year ago
Three wires are made of copper having circular cross sections. Wire 1 has a length l and radius r. Wire 2 has a length l and rad
Alex73 [517]

Explanation:

Below is an attachment containing the solution.

4 0
1 year ago
A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it
Crazy boy [7]

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

4 0
1 year ago
The planet Neptune orbits the Sun. Its orbital radius is 30.130.130, point, 1 astronomical units (\text{AU})(AU)left parenthesis
lord [1]

Answer:

The distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>

Explanation:

As it is given that the Neptune's orbit is circular, the formula that we have to use is the circumference of a circle in order to find the distance it travels in a single orbit around the Sun. In other words, you can say that the circumference of the circle is <em>equivalent</em> to the distance it travels around the Sun in a single orbit.

<em>The circumference of the circle = Distance Travelled (in a single orbit) = 2*π*R ---- (A)</em>

Where,

<em>R = Orbital radius (in this case) = 30.1 AU</em>

<em />

Plug the value of R in the equation (A):

<em>(A) => The circumference of the circle = 2*π*(30.1)</em>

<em> The circumference of the circle = </em><em>60.2π</em>

Therefore, the distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>

5 0
2 years ago
Other questions:
  • an 2-kg object is moving horizontally with a speed of 4m/s. how much net force os required to keep the object movong with the sa
    8·1 answer
  • Marla says that only one person was really responsible for the theory of planetary motion. Do you agree with her? Why or why not
    6·2 answers
  • Arwan finds a piece of quartz while hiking in the mountains. When he returns to school, he takes it to his science teacher. She
    7·2 answers
  • Which lanyard provides an impact force of less than 1,800 pounds, as recommended by good practices?
    10·1 answer
  • The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit
    6·1 answer
  • Megan rode the bus to school, which is located 8 kilometers from her home. If Megan's frame of reference is her house, and it to
    7·1 answer
  • A metal sphere of radius 2.0 cm carries an excess charge of 3.0 μC. What is the electric field 6.0 cm from the center of the sph
    9·1 answer
  • Find the magnitude of the magnetic field ∣∣B⃗ (r)∣∣ inside the cylindrical resistor, where r is the distance from the axis of th
    13·1 answer
  • Karissa is conducting an experiment on the amount of salt that dissolves in water at different temperatures. She repeats her tes
    9·2 answers
  • High-speed stroboscopic photographs show that the head of a 200 g golf club is traveling at 43.7 m/s just before it strikes a 45
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!