answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scorpion4ik [409]
2 years ago
12

Which amplitude of the following longitudinal waves has the greatest energy?

Physics
2 answers:
Rashid [163]2 years ago
8 0

Which amplitude of the following longitudinal waves has the greatest energy?

amplitude = 10 cm; wavelength = 6 cm; period = 4 seconds

sukhopar [10]2 years ago
8 0

Answer: A longitudinal wave has the greatest energy for amplitude 10 cm.

Explanation:

We know that,

The energy is directly proportional to the square of the amplitude.

E \propto a^2

(I). Amplitude = 10

then, the energy will be

E = 100

(II). Amplitude = 6

then, the energy will be

E = 36

(II). Amplitude = 4

then, the energy will be

E = 16

Hence,  A longitudinal wave has the greatest energy for amplitude 10 cm.

You might be interested in
What is the Physics Primer?
Elza [17]

Answer:

A. a set of mathematically topics that are relevant to introductory physics.

Explanation:

The physics primer is not defined as the online comprehensive mathematics textbooks. It is the set of topics of mathematics which gives students trouble and remember.

Therefore, it is defined as the process of physics problem solving. So, mathematically skills are covered in physics course as a primer related success.

Therefore, it is a set of topics of mathematics that are relevent to introductory physics.

7 0
2 years ago
Read 2 more answers
A straight wire lies along the y-axis initially carrying a current of 10 A in the positive y-direction. The current decreases an
Elan Coil [88]

Answer:

Explanation:

The magnetic field due to straight wire is into the square coil.

As the current in straight wire decreases the magnetic flux in the coil decreases . The induced magnetic field is into the coil.The induced current is along +y direction

8 0
2 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
2 years ago
Two convex thin lenses with focal lengths 10.0 cm and 20.0 cm are aligned on a common axis, running left to right, the 10-cm len
love history [14]

Answer:

(c) +6.67

Explanation:

f1 = 10 cm

f2 = 20 cm

u = Object distance = 15 cm

Distance between lenses = 20 cm

For first lens image distance

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{10}-\frac{1}{15}\\\Rightarrow \frac{1}{v}=\frac{1}{30}\\\Rightarrow v=30\ cm

Distance from second lens is 10 cm to the right

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{20}-\frac{1}{-10}\\\Rightarrow \frac{1}{v}=\frac{3}{20}\\\Rightarrow v=6.67\ cm

The final image will appear as +6.67 cm

3 0
2 years ago
What statements accurately describe sunspots? Check all that apply.
polet [3.4K]

Answer:

sunspots are storms on the Suns surface

Sunspots are marked by intense magnetic activity

Sunspots produce solar flares and hot gassy ejections.

Sunspots can affect Earth’s climate.

Explanation:

I just did this lesson

6 0
2 years ago
Other questions:
  • Starting from equilibrium at point 0, what point on the pv diagram will describe the ideal gas after the following process? lock
    5·2 answers
  • as your roller coaster climbs to the top of the steepest hill on its track when does the first car have the greatest potential e
    8·1 answer
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • A 5.0 kg cannonball is dropped from the top of a tower. It falls for 1.6 seconds before slamming into a sand pile at the base of
    8·1 answer
  • A proton travels at right angles through a magnetic field of 0.025 teslas. If the magnitude of the magnetic force on the proton
    12·1 answer
  • A gas in a piston–cylinder assembly undergoes a compression process for which the relation between pressure and volume is given
    7·1 answer
  • A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
    7·1 answer
  • A lab technician uses laser light with a wavelength of 670 nm to test a diffraction grating. When the grating is 40.0 cm from th
    11·1 answer
  • An x-ray tube is an evacuated glass tube that produces electrons at one end and then accelerates them to very high speeds by the
    13·1 answer
  • .. Eugene wants to ride his bike at least 40 miles today. The first hour was
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!