The light bulb, it takes electrical energy and turns it into l<span>ight energy!</span>
6
Explanation:
The mechanical advantage is a factor that measures how input force increases using a machine.
A lever is a simple machine with the fulcrum at the center.
To calculate the mechanical advantage M.A of levers we use the expression below;
M. A =
= 
= input force
= output force
a is the distance of the input force from the fulcrum
b is the distance of the output force from the fulcrum
Given
a = 36cm
b = 6cm
M.A =
= 6
learn more:
Torque brainly.com/question/5352966
#learnwithBrainly
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
Answer:
The amplitude is 2.3 m
The Wavelength is 8.6 m
The frequency is 0.16 Hz
The time period is 6.25 sec
The equation that governs the behavior is ![Y=(2.3)sin[(\frac{2\pi}{8.6} )x -(\frac{2\pi}{6.2} )t]](https://tex.z-dn.net/?f=Y%3D%282.3%29sin%5B%28%5Cfrac%7B2%5Cpi%7D%7B8.6%7D%20%29x%20-%28%5Cfrac%7B2%5Cpi%7D%7B6.2%7D%20%29t%5D)
Explanation:
The explanation is shown on the first uploaded image
Answer:
maximum amplitude = 0.13 m
Explanation:
Given that
Time period T= 0.74 s
acceleration of gravity g= 10 m/s²
We know that time period of simple harmonic motion given as


ω = 8.48 rad/s
ω=angular frequency
Lets take amplitude = A
The maximum acceleration given as
a= ω² A
The maximum acceleration should be equal to g ,then block does not separate
a= ω² A
10= 8.48² A
A=0.13 m
maximum amplitude = 0.13 m