answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
den301095 [7]
2 years ago
15

An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the

new acceleration would be _____ m/s/s.
Physics
1 answer:
alexandr402 [8]2 years ago
5 0

Hahahahaha. Okay.

So basically , force is equal to mass into acceleration.

F=ma

so when F=ma , we get acceleration=6m/s/s

Force is doubled.

Mass is 1/3 times original.

2F=1/3ma

Now , we rearrange , and we get 6F=ma

So , now for 6 times the original force , we get 6 times the initial acceleration.

So new acceleration = 6*6= 36m/s/s

You might be interested in
Sir Marvin decided to improve the destructive power of his cannon by increasing the size of his cannonballs. Sir Seymour kept hi
maria [59]
We really can't tell from the given information. 
We don't know HOW MUCH Marv enlarged his cannonballs,
or HOW MUCH faster Seymour's balls became.

If we assume that they both, let's say, DOUBLED something,
then Seymour accomplished more, and the destructive capability
of his balls has increased more. 

I say that because the destructive capability of a cannonball is
pretty much just its kinetic energy when it arrives and hits the target.
Now, we all know the equation for kinetic energy.

                K.E.  =  (1/2) (mass) (speed-SQUARED) .

We can see right away that if Marv started shooting balls with
double the mass but at the same speed, then they have double
the kinetic energy of the old ones.

But if Seymour started shooting the same balls with double the SPEED,
then they have (2-SQUARED) as much kinetic energy as they used to.

That's 4 times as much destructive capability as before.  

So we can say that when it comes to cannons and their balls and
smashing things to bits and terrorizing your opponents, if making
a bigger mess is better, then more mass is better, but more speed
is better-squared.
5 0
2 years ago
If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.
Anna35 [415]

This question is incomplete

Complete Question

Three equal point charges are held in place as shown in the figure below

If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.

A) F1=2F2

B) F1=3F2

C) F1=4F2

D) F1=9F2

Answer:

D) F1=9F2

Explanation:

We are told in the question that there are three equal point charges.

q, Q1, Q2 ,

q = Q1 = Q2

From the diagram we see the distance between the points d

q to Q1 = d

Q1 to Q2 = nd

Assuming n = 2

= 2 × d = 2d

Sum of the two distances = d + 2d = 3d

F1 is the force on q due to Q1 and

F2 is the force on q due to Q2,

Since we have 3 equal point charges and a total sum of distance which is 3d

Hence,

F1 = 9F2

6 0
2 years ago
The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit
const2013 [10]

Answer:

fr = ½ m v₀²/x

Explanation:

This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.

The best way to solve this exercise is to use the energy work theorem

            W = ΔK

Where work is defined as the product of force by distance

           W = fr x cos 180

The angle is because the friction force opposes the movement

          Δk =K_{f} –K₀

          ΔK = 0 - ½ m v₀²

We substitute

         - fr x = - ½ m v₀²      

           fr = ½ m v₀²/x

8 0
2 years ago
Three wires are made of copper having circular cross sections. Wire 1 has a length l and radius r. Wire 2 has a length l and rad
Alex73 [517]

Explanation:

Below is an attachment containing the solution.

4 0
2 years ago
In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
Alexxandr [17]

Answer:

a) a = g / 3

b) x (3.0) = 14.7 m

c) m (3.0) = 29.4 g

Explanation:

Given:-

- The following differential equation for (x) the distance a rain drop has fallen has the form:

                             x*g = x * \frac{dv}{dt} + v^2

- Where,                v = Speed of the raindrop

- Proposed solution to given ODE:

                             v = a*t

Where,                  a = acceleration of raindrop

Find:-

(a) Using the proposed solution for v find the acceleration a.

(b) Find the distance the raindrop has fallen in t = 3.00 s.

(c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s.

Solution:-

- We know that acceleration (a) is the first derivative of velocity (v):

                             a = dv / dt   ... Eq 1

- Similarly, we know that velocity (v) is the first derivative of displacement (x):

                            v = dx / dt  , v = a*t ... proposed solution (Eq 2)

                             v .dt = dx = a*t . dt

- integrate both sides:

                             ∫a*t . dt = ∫dt

                             x = 0.5*a*t^2  ... Eq 3

- Substitute Eq1 , 2 , 3 into the given ODE:

                            0.5*a*t^2*g = 0.5*a^2 t^2 + a^2 t^2

                                                = 1.5 a^2 t^2

                            a = g / 3

- Using the acceleration of raindrop (a) and t = 3.00 second and plug into Eq 3:

                           x (t) = 0.5*a*t^2

                           x (t = 3.0) = 0.5*9.81*3^2 / 3

                           x (3.0) = 14.7 m  

- Using the relation of mass given, and k = 2.00 g/m, determine the mass of raindrop at time t = 3.0 s:

                           m (t) = k*x (t)

                           m (3.0) = 2.00*x(3.0)

                           m (3.0) = 2.00*14.7

                           m (3.0) = 29.4 g

6 0
2 years ago
Other questions:
  • A student wants to determine the impulse delivered to the lab cart when it runs into the wall. The student measures the mass of
    7·1 answer
  • An electron is orbiting a nucleus which has a charge of 19e, under the action of the coulomb force at a radius of 1.15 × 10-10 m
    14·2 answers
  • Which of the following graphs shows the relationship between two variables that obey the inverse square law?​
    12·1 answer
  • A solenoid of length 0.700m having a circular cross-section of radius 5.00cm stores 6.00 μJ of energy when a 0.400-A current run
    10·2 answers
  • Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -2.0 µC; sphere B carries a charge of -6.0 µC;
    6·1 answer
  • If Anya decides to make the star twice as massive, and not change the length of any crossbar or the location of any object, what
    10·1 answer
  • A 1 mg ball carrying a charge of 2 x 10-8 C hangs from a
    5·1 answer
  • In the demolition of an old building, a 1,300 kg wrecking ball hits the building at 1.07 m/s2. Calculate the amount of force at
    11·1 answer
  • A cross country skier moves from location A to location B to location C to location D. Each leg of the back and forth motion tak
    7·1 answer
  • A skier uses a pair of poles to push himself down a ski slope. Which of the following correctly states when the skier has the mo
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!