Answer:
1.32.225 N/C, direction is away from the point charge
2. 8.972*10^-12 C
3. the field is directed away from the axon
Explanation:
The electric field can be calculated as shown below:
E = k*|q|/r^2
Where:
E = electric field; k = 8.98755*10^9 N*m^2/C^2; r = distance between the measured field and point charge = 0.05 m; q = the point charge
For 0.100 m of the axon, the value of q is:
q = (5.6*10^11)*(+e)*(0.001)
+e = charge of an electron = 1.60217*10^-19 C
Thus:
q = (5.6*10^11)*(1.60217*10^-19)*(0.0001) = 8.972*10^-12 C
Therefore:
E = (8.98755*10^9)*(8.972*10^-12)/0.05^2 = 32.255 N/C
A positive point charge always produce an electric field that is directed away from the field while a negative point charge produces an electric field that is directed toward the field
The braking force is -400 N
Explanation:
We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

where in this problem, we have:
F is the force applied by the brakes
is the time interval
m = 13,000 kg is the mass of the ferry
u = 2.0 m/s is the initial velocity
v = 0 is the final velocity
And solving for F, we find the force applied by the brakes:

where the negative sign indicates that the direction is backward.
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
Answer
Hi,
correct answer is {D} 3.5 m/s²
Explanation
Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.
Acceleration is calculated by the equation =change in velocity/change in time
a= {velocity final-velocity initial}/(change in time)
a=v-u/Δt
The units for acceleration is meters per second square m/s²
In this example, initial velocity =2.0m/s⇒u
Final velocity=44.0m/s⇒v
Time taken for change in velocity=12 s⇒Δt
a= (44-2)/12 = 42/12
3.5 m/s²
Best Wishes!
Answer:
35 288 mile/sec
Explanation:
This is a problem of special relativity. The clocks start when the spaceship passes Earth with a velocity v, relative to the earth. So, out and back from the earth it will take:

If we use the Lorentz factor, then, as observed by the crew of the ship, the arrival time will be:

Then the amount of time wil expressed as a reciprocal of the Lorentz factor. Thus:


solving for v, gives = 35 288 miles/s