Gravity changes as the altitude change.<span> The gravitational force is proportional to 1/R2, where R is the distance from the center of the Earth the radius of earth where gravity is 9.8 m/s^2 is 6400 km this will serve as the zero mark.
g1/(g2) = R2^2/(R1)^2
so we set the constant values to R1 and the unknown distance as x
(9.8)/(8.80) = (6400-x)2/(6400)^2
solving for x we will get
x = 345.85 km above the earths surface
</span>
<span>Hope my answer would be a great help for you.
If </span>you have more questions feel free to ask here at Brainly.
<span> </span>
Answer:
V is approximately = 23m/s
Explanation:
Kinetic energy = ½ mv²
Where m= mass = 0.450kg
V= velocity =?
K. E = 119J
Therefore
K. E = ½ mv²
Input values given
119= ½ × 0.450 × v²
Multiply both sides by 2
119 ×2 = 2 × 1/2 × 0.450 × v²
238= 0.450v²
Divide both sides by 0.450
238/0.450 = 0.450v²/0.450
v² = 528.89
Square root both sides
Sq rt v² = sq rt 528.89
V = 22.998m/s
V is approximately = 23m/s
I hope this was helpful, please rate as brainliest
The second problem requires a figure to be answered. For the first problem
The acceleration of the sack is
1.5² - 0² = 2a(0.2)
a = 5.63 m/s2
The reaction of the ramp is
F = 8 kg (5.63 m/s2)
F = 45 N
Differentiate the kinematic equation involving time to get the rate of increase of the velocity.
Answer with Explanation:
We are given that
Restoring force,


We have to find the work must you do to compress this spring 15 cm.
Using 1 m=100 cm
Work done=
W=
![W=k[\frac{(\Delta s)^2}{2}]^{0.15}_{0}+q[\frac{(\Delta s)^4}{4}]^{0.15}_{0}](https://tex.z-dn.net/?f=W%3Dk%5B%5Cfrac%7B%28%5CDelta%20s%29%5E2%7D%7B2%7D%5D%5E%7B0.15%7D_%7B0%7D%2Bq%5B%5Cfrac%7B%28%5CDelta%20s%29%5E4%7D%7B4%7D%5D%5E%7B0.15%7D_%7B0%7D)


Ideal spring work=
Percentage increase in work=
%
Answer:
D. Speed up the assembly line transfer mechanism
Explanation:
All of the options are logic and very intelligent ways to reduce the longest task time, but if you just speed up the assembly line transfer you will end up with two possible outcomes, frustrated workers cause they always have to be rushing up to finish their task and thus a lower quality in the product you are producing, or that the workers on that specific part of the assembly line definetely can´t perform the task and endu up not doing their job and you end up with incomplete products.