Initial speed of the coin (u)= 0 (As the coin is released from rest)
Acceleration due to gravity (a) = g = 9.81 m/s²
Time of fall (t) = 1.5 s
From equation of motion we have:

By substituting values in the equation, we get:
v = 0 + 9.81 × 1.5
v = 14.715 m/s
Speed of the coin as it hits the ground/Final speed of the coin = 14.715 m/s
Explanation & answer:
Given:
Fuel consumption, C = 22 L/h
Specific gravity = 0.8
output power, P = 55 kW
heating value, H = 44,000 kJ/kg
Solution:
Calculate energy intake
E = C*P*H
= (22 L/h) / (3600 s/h) * (1000 mL/L) * (0.8 g/mL) * (44000 kJ/kg)
= (22/3600)*1000*0.8*44000 j/s
= 215111.1 j/s
Calculate output power
P = 55 kW
= 55000 j/s
Efficiency
= output / input
= P/E
=55000 / 215111.1
= 0.2557
= 25.6% to 1 decimal place.
Sometimes arithmetic problems can be solved much more easily using the dimensional analysis approach. You focus on the units of the given information. Then, you manipulate them applying the laws of algebra where like units cancel, in order to end up with the unit of the unknown.
Given:
-50 nc/step
31 steps
Unknown: charge
Thus,
Charge = -50 nc/step * 31 steps =<em> -1550 nc</em>
The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.