V ( initial ) = 20 m/s
h = 2.30 m
h = v y * t + g t ² / 2
d = v x * t
1 ) At α = 18°:
v y = 20 * sin 18° = 6.18 m/s
v x = 20 * cos 18° = 19.02 m/ s
2.30 = 6.18 t + 4.9 t²
4.9 t² + 6.18 t - 2.30 = 0
After solving the quadratic equation ( a = 4.9, b = 6.18, c = - 2.3 ):
t 1/2 = (- 6.18 +/- √( 6.18² - 4 * 4.9 * (-2.3)) ) / ( 2 * 4.9 )
t = 0.3 s
d 1 = 19.02 m/s * 0.3 s = 5.706 m
2 ) At α = 8°:
v y = 20* sin 8° = 2.78 m/s
v x = 20* cos 8° = 19.81 m/s
2.3 = 2.78 t + 4.9 t²
4.9 t² + 2.78 t - 2.3 = 0
t = 0.46 s
d 2 = 19.81 * 0.46 = 9.113 m
The distance is:
d 2 - d 1 = 9.113 m - 5.706 m = 3.407 m
GOOD LUCK AND HOPE IT HELPS U
<span>v = 25.0 km/</span><span>h = 25*5/18 m/s = 6.94 m/s
</span><span>centripetal force = mv²/r = 1275*6.94²/40 = 1537.18 N </span>
Explanation:
Formula to calculate electric field because of the plate is as follows.
E =
=
=
Now, we will consider that equilibrium of forces are present there. So,
ma = qE
a =
=
According to the third equation of motion,
or, d = 
= 
= 0.254 m
Thus, we can conclude that
the proton will travel 0.254 m before reaching its turning point.
Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km