Answer:
13.9
Explanation:
Apparent weight is the normal force. Sum of the forces on the alloy when it is submerged:
∑F = ma
N + B − W = 0
N + ρVg − mg = 0
6.6 + (0.78 × 1000) V (9.8) − (0.750) (9.8) = 0
V = 9.81×10⁻⁵
If x is the volume of the first material, and y is the volume of the second material, then:
x + y = 9.81×10⁻⁵
(7.87×1000) x + (4.50×1000) y = 0.750
Two equations, two variables. Solve with substitution:
7870 (9.81×10⁻⁵ − y) + 4500 y = 0.750
0.772 − 7870 y + 4500 y = 0.750
0.0222 = 3370 y
y = 6.58×10⁻⁶
x = 9.15×10⁻⁵
The ratio of the volumes is:
x/y = 13.9
Answer:The answer must be The weight of the man and the vertical distance moved.
Explanation: you calculate it by the force you applied times the distance you moved
Alkali metals : sodium , potassium
alkaline earth : magnesium , calcium
the rest are transition elements... i don't know about "inner transition"
<em>projectile can only follow the straight line path when it is launched upward straightly so the correct option is <u>90 degree with respect to horizontal x -axis ..:)</u></em>
In collision type of problems since momentum is always conserved
we can say

So here along with this equation we also required one more equation for the restitution coefficient

so above two equations are required to find the velocity after collision
here the change in velocity occurs due to the contact force while they contact in each other
so this is the impulse of collision while they are in contact with each other while in collision which changes the velocity of two colliding objects