answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
2 years ago
6

Sketch the circuit labeling the meter and bulb as two separate resistors connected in parallel to the voltage source. Then show

mathematically that if the meter’s internal resistance is 1000 times higher than the bulb’s resistance, the current in the meter is 1000 times less than through the bulb. This shows why measuring voltage with a multimeter does not affect the circuit.

Physics
1 answer:
Ksenya-84 [330]2 years ago
5 0

Answer:

Show attached picture

Explanation:

Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call R_M its internal resistance) and R indicates the resistance of the light bulb.

We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:

R_M = 1000 R (1)

Both  the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

V_M = V_R

Using Ohm's law, V=RI, we can rewrite the previous equation as:

R_M I_M = R I_R

where

I_M is the current in the meter

I_R is the current in the bulb

Using (1), this equation becomes

(1000 R) I_M = R I_R \rightarrow I_M = \frac{I_R}{1000}

so, the current in the meter is 1000 times less than through the bulb.

You might be interested in
Calculate the calories lost when 95 g of water cools from 45 ∘C to 29 ∘C. Express your answer to two significant figures and inc
lubasha [3.4K]

Answer:

1,520.00 calories

Explanation:

Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).

Given that ĉ = Q / (m.ΔT),

where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),

m= mass of the substance (unity: grams or g), and

ΔT= difference of temperature (unity: Celsius degrees or °C); and

m= 95g and ΔT= 16°C:

Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal </u>

8 0
2 years ago
A person wants to lose weight by "pumping iron". The person lifts an 80 kg weight 1 meter. How many times must this weight be li
statuscvo [17]

Answer:

37357 sec  

or 622 min

or 10.4 hrs

Explanation:

GIVEN DATA:

Lifting weight 80 kg

1 cal = 4184 J

from information given in question we have

one lb fat consist of 3500 calories = 3500 x 4184 J

= 14.644 x 10^6 J  

Energy burns in 1 lift = m g h

                                  = 80 x 9.8 x 1 = 784 J

lifts required = \frac{(14.644 x 10^6)}{784}

                      = 18679

from the question,

1 lift in 2 sec.

so, total time = 18679 x 2 = 37357 sec  

or 622 min

or 10.4 hrs

3 0
1 year ago
At a certain instant after jumping from the airplane A, a skydiver B is in the position shown and has reached a terminal (consta
Lubov Fominskaja [6]

Answer:

a=2330

b= 0.223secs

Explanation:

pb=2330m

t=0.223secs

6 0
1 year ago
A rigid, 2.50 L bottle contains 0.458 mol He. The pressure of the gas inside the bottle is 1.83 atm. If 0.713 mol Ar is added to
stellarik [79]
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.

The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.

You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
 
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):

PiVi=niRTi --> Ti=(PiVi)/(niR)
 
PfVf=nfRTf --> Tf=(PfVf)/(nfR)

ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)

In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
8 0
1 year ago
Read 2 more answers
A 900 kg steel beam is supported by the two ropes shown in (Figure 1) . Calculate the tension in the rope.
Rzqust [24]
Let T1 and T2 be tension in ropes1 and 2 respectively. 
<span>since system is stationary (equilibrium), considering both ropes + beam as a system </span>

<span>for horizontal equilibrium (no movement in that direction, so resultant force must be zero horizontally) </span>
<span>T1sin(20) = T2sin(30) </span>
<span>=> T1 = T2sin(30) / sin(20) </span>

<span>for vertical equilibrium, (no movement in this direction, so resultant force must be zero vertically) </span>
<span>T1cos(20) + T2cos(30) = mg </span>

<span>m = 900kg, substituting for T1 </span>
<span>T2sin(30)*cos(20)/sin(20) + T2cos(30) = 900g </span>
<span>2.328*T2 = 900*9.8 </span>
<span>T2 = 3788.65N </span>
<span>so T1 from (1) </span>
<span>T1 = 5535.21N</span>
8 0
1 year ago
Other questions:
  • The image shows an example of white light entering a prism and coming out as colors of the rainbow. How does a prism a produce t
    11·2 answers
  • What is the final speed if the displacement is increased by a factor of 4?
    12·1 answer
  • Which structure contains the lowest amount of oxygen?
    5·2 answers
  • A frictionless inclined plane is 8.0 m long and rests on a wall that is 2.0 m high. How much force is needed to push a block of
    5·1 answer
  • A student attaches a block to a vertical spring so that the block-spring system will oscillate if the block-spring system is rel
    11·1 answer
  • A 50.0 Watt stereo emits sound waves isotropically at a wavelength of 0.700 meters. This stereo is stationary, but a person in a
    9·1 answer
  • The wavelength of light is 5000 angstrom. Express it in nm and m.
    13·1 answer
  • Imagine you derive the following expression by analyzing the physics of a particular system: M= (mv2r)(mGr2). Simplify the expre
    12·1 answer
  • A parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates. A 1.0 g plastic bead, with a charg
    11·1 answer
  • Solenoid 2 has twice the diameter, twice the length, and twice as many turns as solenoid 1. How does the field B2 at the center
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!