Answer:
Explanation:
Given that,
Basket ball is drop from height
H=10m
It is dropped on planet mass
And the acceleration due to gravity on Mars is given as
g= 3.7m/s²
Time taken for the ball to reach the ground
Initial velocity of the body is zero
u=0m/s
Using equation of motion: free fall
H = ut + ½gt²
10 = 0•t + ½ × 3.7 ×t²
10 = 0 + 1.85t²
10 = 1.85t²
Then, t² =10/1.85
t² = 5.405
t = √ 5.405
t = 2.325seconds
So the time the ball spend on the air before reaching the ground is 2.325 seconds
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
Answer: 0.204 s
Explanation:
The speed of sound
is defined as the distance traveled
in a especific time
:
Where:
is the speed of sound in seawater
is the time the sound wave travels from the dolphin and then returns after the reflection
is twice the distance between the dolphin and the object to which the sound waves are reflected
Finding
:
<u>Finally:</u>
Helium atom, in other words, it consistis of a particle having four protons and two neutrons.
<u>Answer:</u>
Velocity of the dog relative to the road = 26.04 m/s 3.15⁰ north of east.
<u>Explanation:</u>
Let the east point towards positive X-axis and north point towards positive Y-axis.
Speed of truck = 25 m/s north = 25 j m/s
Speed of dog = 1.75 m/s at an angle of 35.0° east of north = (1.75 cos 35 i + 1.75 sin 35 j)m/s
= (1.43 i + 1.00 j) m/s
Velocity of the dog relative to the road = 25 j + 1.43 i + 1.00 j = 1.43 i + 26.00 j
Magnitude of velocity = 26.04 m/s
Angle from positive horizontal axis = 86.85⁰
So Velocity of the dog relative to the road = 26.04 m/s 86.85⁰ east of north = 26.04 m/s 3.15⁰ north of east.