Answer:
Explanation:
As we stir the pot of soup by a metal spoon which is a conductor, it conducts the heat and starts heating after some time the temperature of the spoon rises and we are not able to hold the spoon and we get burns.
Answer:
1.32.225 N/C, direction is away from the point charge
2. 8.972*10^-12 C
3. the field is directed away from the axon
Explanation:
The electric field can be calculated as shown below:
E = k*|q|/r^2
Where:
E = electric field; k = 8.98755*10^9 N*m^2/C^2; r = distance between the measured field and point charge = 0.05 m; q = the point charge
For 0.100 m of the axon, the value of q is:
q = (5.6*10^11)*(+e)*(0.001)
+e = charge of an electron = 1.60217*10^-19 C
Thus:
q = (5.6*10^11)*(1.60217*10^-19)*(0.0001) = 8.972*10^-12 C
Therefore:
E = (8.98755*10^9)*(8.972*10^-12)/0.05^2 = 32.255 N/C
A positive point charge always produce an electric field that is directed away from the field while a negative point charge produces an electric field that is directed toward the field
Answer:
Explanation:
The minimum magnitude of acceleration = 3 m /s²
displacement at t = 1
s = ut + 1 /2 at²
= -3 x 1 + .5 x 3 x 1²
= - 3 + 1.5
= - 1.5 m
position at t = 1 s
= 10 - 1.5
= 8.5 m
The maximum magnitude of acceleration = 6 m /s²
displacement at t = 1
s = ut + 1 /2 at²
= -3 x 1 + .5 x 6 x 1²
= - 3 + 3
= 0
position at t = 1 s
= 10 +0
= 10 m
So range of position is 8.5 m to 10 m .
Answer:
maximumforce is F = mg
Explanation:
For this case we must use Newton's second law,
Σ F = m a
bold indicate vectors, so we will write it in its components x and y
X axis
Fₓ = maₓ
Axis y
Fy - W = m a
Now let's examine our case, with indicate that the bird is level, the force of the wings can have a measured angle with respect to the x axis, where the vertical component is responsible for the lift, let's use trigonometry to find the components
Cos θ = Fₓ / F
Fₓ = F cos θ
sin θ = Fy / F
Fy = F sin θ
Let's replace and calculate
F sin θ -w = m a
As the bird indicates that leveling at the same height, so the vertical acceleration is zero (ay = 0)
F sin θ = w = mg
The maximum value of this equation occurs when the sin=1, in this case
F = mg
Answer:
a) W_total = 8240 J
, b) W₁ / W₂ = 1.1
Explanation:
In this exercise you are asked to calculate the work that is defined by
W = F. dy
As the container is rising and the force is vertical the scalar product is reduced to the algebraic product.
W = F dy = F Δy
let's apply this formula to our case
a) Let's use Newton's second law to calculate the force in the first y = 5 m
F - W = m a
W = mg
F = m (a + g)
F = 80 (1 + 9.8)
F = 864 N
The work of this force we will call it W1
We look for the force for the final 5 m, since the speed is constant the force must be equal to the weight (a = 0)
F₂ - W = 0
F₂ = W
F₂ = 80 9.8
F₂ = 784 N
The work of this fura we will call them W2
The total work is
W_total = W₁ + W₂
W_total = (F + F₂) y
W_total = (864 + 784) 5
W_total = 8240 J
b) To find the relationship between work with relate (W1) and work with constant speed (W2), let's use
W₁ / W₂ = F y / F₂ y
W₁ / W₂ = 864/784
W₁ / W₂ = 1.1