Answer:

Explanation:
According to Newton's first law:

The component of the force on the y-axis can be obtained through the Pythagorean Theorem. This is because the components are the cathetus of a right triangle and its hypotenuse is the magnitude of the force:

Replacing and solving for N:

Answer:
The starting position of the runner.
Explanation:
When you look at the graph, you can see that the first point on the graph is twenty on the y-axis.
The runner starts at twenty, and ends at thirty.
Therefore, the runner starts at twenty on the y-axis, so it's the starting position of the runner.
Let Karen's forward speed be considered as positive.
Therefore, before the headband is tossed backward, the speed of the headband is
V = 9 m/s
The headband is tossed backward relative to Karen at a speed of 20 m/s. Therefore the speed of the headband relative to Karen is
U = -20 m/s
The absolute speed of the headband, relative to a stationary observer is
V - U
= 9 + (-20)
= - 11 m/s
Answer:
The stationary observes the headband traveling (in the opposite direction to Karen) at a speed of 11 m/s backward.
Explanation :
The interaction between two objects is termed as the collision. The collision can be of two types i.e. elastic collision and inelastic collision.
In this case, two identical carts travel at the same speed toward each other, and then a collision occurs. In an inelastic collision, the momentum before and after the collision remains the same but its kinetic energy gets lost.
After the collision, both the object sticks over each other and moves with one velocity.
Out of the given graph, the graph that shows a perfectly inelastic collision is attached. It shows that after the collision both the carts move with the same velocity.
I made the drawing in the attached file.
I included two figures.
The upper figure shows the effect of:
- multiplying vector A times 1.5.
It is drawn in red with dotted line.
- multiplying vector B times - 3 .
It is drawn in purple with dotted line.
In the lower figure you have the resultant vector: C = 1.5A - 3B.
The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.
Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.
The resultant arrow is the vector C and it is drawn in black dotted line.