Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km
Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s
Answer:
1.05 N
Explanation:
K = 0.7 N/m
e = 1.5 m
F = ?
from Hooke's law of elasticity
F = Ke
= 0.7×1.5
= 1.05 N
Answer:
17 m/s south
Explanation:
= Mass of dog = 10 kg
= Mass of skateboard = 2 kg
v = Combined velocity = 2 m/s
= Velocity of dog = 1 m/s
= Velocity of skateboard
In this system the linear momentum is conserved

The velocity of the skateboard will be 17 m/s south as the north is taken as positive