Answer:
Option B and C are True
Note: The attachment below shows the force diagram
Explanation:
The weight of the two blocks acts downwards.
Let the weight of the two blocks be W. Solving for T₁ and T₂;
w = T₁/cos 60° -----(1)
w = T₂/cos 30° ----(2)
equating (1) and (2)
T₁/cos 60° = T₂/cos 30°
T₁ cos 30° = T₂ cos 60°
T₂/T₁ = cos 30°/cos 60°
T₂/T₁ =1.73
Therefore, option a is false since T₂ > T₁
Option B is true since T₁ cos 30° = T₂ cos 60°
Option C is true because the T₃ is due to the weight of the two blocks while T₄ is only due to one block.
Option D is wrong because T₁ + T₂ > T₃ by simple summation of the two forces, except by vector addition.
Answer:
Intensity of beam 18 feet below the surface is about 0.02%
Explanation:
Using Lambert's law
Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium
then dI / I = kdt
taking log,
ln(I) = kt + ln C
I = Ce^kt
t=0=>I=I(0)=>C=I(0)
I = I(0)e^kt
t=3 & I=0.25I(0)=>0.25=e^3k
k = ln(0.25)/3
k = -1.386/3
k = -0.4621
I = I(0)e^(-0.4621t)
I(18) = I(0)e^(-0.4621*18)
I(18) = 0.00024413I(0)
Intensity of beam 18 feet below the surface is about 0.2%
<span>65W * 8h * 3600s/h = 1.9e6 J = 447 Cal </span>
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.
Answer:
0.04328 H
0.00288 seconds
0.01326 seconds
Explanation:
V = Voltage = 6.3 V
R = Resistance = 15 Ω
L = Inductance
I = Decayed current = 0.21 A
t = Time to decay = 2 ms
Maximum Current is given by

Current in the circuit is given by

The inductance is 0.04328 H
Time constant is given by

Time constant is 0.00288 seconds
Time required is given by

The time to reach 1% of its original value is 0.01326 seconds