Answer:
Energy resources can be measured. They will include the fossil fuels, geothermal and hydroelectric potential, and increasingly the renewable resources. When the US list is compared to the World it is considered energy Rich. When Japan's list is compared to the world standard it considered energy poor.
A changing technology like nuclear fusion could substantially change the assessment.
Japan does not have any substantial, oil, coal, gas, deposits, while the US does.
Explanation:
NOTE: The given question is incomplete.
<u>The complete question is given below.</u>
The human eye contains a molecule called 11-cis-retinal that changes conformation when struck with light of sufficient energy. The change in conformation triggers a series of events that results in an electrical signal being sent to the brain. The minimum energy required to change the conformation of 11-cis-retinal within the eye is about 164 kJ/mole. Calculate the longest wavelength visible to the human eye.
Solution:
Energy (E) = 164 kJ/mole
E = 164 kJ/mole = 164 kJ /6.023 x 10²³
= 2.72 x 10⁻²² kJ = 2.72 x 10⁻¹⁹J
Planck's constant = 6.6 x 10⁻³⁴ J s,
Speed of light = 3.00 x 10⁸ m/s
Let the required wavelength be λ.
Formula Used: E = hc / λ
or, λ = hc / E
or, λ = (6.6 x 10⁻³⁴ J s)× (3.00 x 10⁸ m/s) / (2.72 x 10⁻¹⁹J)
or, λ = 7.28 x 10⁻⁷ m
or, λ = (7.28 x 10⁻⁷ m) ×( 1.0 x 10⁹ nm / 1.0 m)
or, λ = (7.28 x 10² nm)
or, λ = 728 nm
Hence, the required wavelength will be 728 nm.
Answer:
39975kgm/s due east
Explanation:
Given parameters:
Mass of the blimp = 533kg
Velocity = +75m/s due east
Unknown:
Momentum of the body = ?
Solution:
The momentum of a body is the amount of motion it posses.
Momentum is the product of mass and velocity;
Momentum = mass x velocity
Insert the parameters and solve;
Momentum = 533 x 75 = 39975kgm/s
The momentum of the body is 39975kgm/s due east
Answer:
1.75 m/s
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
(50 g) (15 m/s) + (600 g) (0 m/s) = (50 g) (-6 m/s) + (600 g) v
v = 1.75 m/s
Answer:
distance=6.11m
Explanation:
A basketball player is running at a constant speed of 2.5 m/s when he tosses a basketball upward with a speed of 6.0 m/s. How far does the player run before he catches the ball? Ignore air resistance. I got stuck because I wasn't sure which formula to use when approaching this problem. Does it involve an angle at all?
first of all we get the time it takes to reach the maximum height
then twice of the time it takes to reach maximum height will be the time of flight
from newtons equation of motion
v=u+at
v=0
u=6m/s
0=6-9.81t
t=.61s
the time of flight will be 1.22secs
how far it travels will then be d, the basketball player moves with a horizontal speed 2.5m/s towards the ball
distance=speed*time
distance=2.5m/s*1.22
distance=6.11m