answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
1 year ago
14

Cylinder A is moving downward with a velocity of 3 m/s when the brake is suddenly applied to the drum. Knowing that the cylinder

moves 6 m downward before coming to rest and assuming uniformly accelerated motion, determine (a) the angular acceleration of the drum, (b) the time required for the cylinder to come to rest.
Physics
1 answer:
Xelga [282]1 year ago
7 0

Answer:

Incomplete question

Check attachment for the given diagram

Explanation:

Given that,

Initial Velocity of drum

u=3m/s

Distance travelled before coming to rest is 6m

Since it comes to rest, then, the final velocity is 0m/s

v=3m/s

Using equation of motion to calculate the linear acceleration or tangential acceleration

v²=u²+2as

0²=3²+2×a×6

0=9+12a

12a=-9

Then, a=-9/12

a=-0.75m/s²

The negative sign shows that the cylinder is decelerating.

Then, a=0.75m/s²

So, using the relationship between linear acceleration and angular acceleration.

a=αr

Where

a is linear acceleration

α is angular acceleration

And r is radius

α=a/r

From the diagram r=250mm=0.25m

Then,

α=0.75/0.25

α =3rad/sec²

The angular acceleration is =3rad/s²

b. Time take to come to rest

Using equation of motion

v=u+at

0=3-0.75t

0.75t=3

Then, t=3/0.75

t=4 secs

The time take to come to rest is 4s

You might be interested in
If the surface temperature of that person's skin is 30∘C (that's a little lower than healthy internal body temperature becaus
anastassius [24]

Answer:

E=477.92\ W.m^{-2}

Explanation:

Given that:

Absolute temperature of the body, T=273+30=303\ K

  • emissivity of the body, \epsilon=1

<u>Using Stefan Boltzmann Law of thermal radiation:</u>

E=\epsilon. \sigma.T^4

where:

\sigma =5.67\times 10^{-8}\ W.m^{-2}.K^{-4}   (Stefan Boltzmann constant)

Now putting the respective values:

E=1\times 5.67\times 10^{-8}\times 303^4

E=477.92\ W.m^{-2}

5 0
1 year ago
Determine the magnitude and sense (direction) of the current in the 500-latex: \omega ω resistor when i = 30 ma.
VARVARA [1.3K]

Complete Question:

Check the circuit in the file attached to this solution

Answer:

Total current = 0.056 A(From left to right)

Explanation:

Let the current in loop 1 be I₁ and the current in loop 2 be I₂

Applying KVL to loop 1

30 - (I₁ - I₂)500 + I₂R + 15 = 0

45 - 500I₁ - 500I₂ + RI₂ = 0

I₁ = 30mA = 0.03 A

45 - 500(0.03) - 500I₂ + RI₂ = 0

30 -500I₂ + RI₂ = 0...............(1)

Applying kvl to loop 2

-RI₂ - 15 + 10 - 400I₁ = 0

-RI₂ = 5 + 400*0.03

RI₂ = -17 ................(2)

Put equation (2) into (1)

30 -500I₂ -17 = 0

-500I₂ = 13

I₂ = -13/500

I₂ = -0.026 A

The total current in the 500 ohms resistor = I₁ - I₂ = 0.03+0.026

Total current = 0.056 A

The current will flow from left to right

5 0
1 year ago
A 15.0-gram lead ball at 25.0°C was heated with 40.5 joules of heat. Given the specific heat of lead is 0.128 J/g∙°C, what is th
mr Goodwill [35]

Answer:

T=4985.5^{\circ}K

Explanation:

The equation that relates heat Q with the temperature change T-T_0 of a substance of mass <em>m </em>and specific heat <em>c </em>is Q=mc(T-T_0).

We want to calculate the final temperature <em>T, </em>so we have:

T=\frac{Q}{mc}+T_0

Which for our values means (in this case we do not need to convert the mass to Kg since <em>c</em> is given in g also and they cancel out, but we add 273^{\circ} to our temperature in ^{\circ}C to have it in ^{\circ}K as it must be):

T=\frac{Q}{mc}+T_0=\frac{40.5J}{(15g)(0.128J/g^{\circ}C)}+(298^{\circ}K)=4985.5^{\circ}K

3 0
1 year ago
What mass needs to be attached to a spring with a force constant of 7N/m in order to make a simple harmonic oscillator oscillate
Alex_Xolod [135]

Answer:

Mass will be 4.437 kg

Explanation:

We have given force constant k = 7 N/m

Time period of oscillation T = 5 sec

So angular frequency \omega =\frac{2\pi }{T}=\frac{2\times 3.14}{5}=1.256rad/sec

We know that angular frequency is given by

\omega =\sqrt{\frac{k}{m}}

1.256 =\sqrt{\frac{7}{m}}

Squaring both side

1.577 =\frac{7}{m}

m = 4.437 kg

6 0
1 year ago
Light is propagated as a transverse wave. For this reason, sunglasses, ski goggles and camera lenses can restrict the vibration
Flura [38]

Polerization is the anwser

6 0
2 years ago
Read 2 more answers
Other questions:
  • Make a diagram showing the forces acting on a coasting bike rider traveling at 25km/h on a flat roadway.
    14·2 answers
  • Which of the following substances will show the smallest change in temperature when equal amounts of energy are absorbed?
    7·2 answers
  • Light from a lamp is shining on a surface. how can you increase the intensity of the light on the surface?
    10·1 answer
  • A small cork with an excess charge of +6.0µC is placed 0.12 m from another cork, which carries a charge of -4.3µC.
    11·1 answer
  • What is the change in entropy of helium gas with total mass 0.135 kg at the normal boiling point of helium when it all condenses
    13·1 answer
  • From Kepler's third law, an asteroid with an orbital period of 8 years lies at an average distance from the Sun equal to:
    5·1 answer
  • a 0.0215m diameter coin rolls up a 20 degree inclined plane. the coin starts with an initial angular speed of 55.2rad/s and roll
    6·1 answer
  • Calculate the time taken by the light to pass through a nucleus of diameter 1.56 10 -16 m. (speed of light is 3 10 8 m/s)
    10·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!