Answer:
circuit sketched in first attached image.
Second attached image is for calculating the equivalent output resistance
Explanation:
For calculating the output voltage with regarding the first image.

![Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V](https://tex.z-dn.net/?f=Vout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5B%2F%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DVout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5C%5CVout%20%3D%205%20%5Cfrac%7B2%7D%7B5%7D%20%3D%202%20V)
For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.
so.

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.
if the -5% is applied to both resistors the Voltage is still 5V because the quotient has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:




so.

Answer:
2.25 %
Explanation:
65-95-99.7 is a rule to remember the precentages that lies around the mean.
at the range of mean (
) plus or minus one standard deviation (
),
at the range of mean plus or minus two standard deviation,
at the range of mean plus or minus three standard deviation,
So, note that they are asking about the probability that it is greater than 0.32, that is the mean (0.3) plus two times the standard deviation (0.1) (
)
So we know that the 95.5% is between
and
, hence approximately the 4.5% (100%-95.5%) is greater than 0.32 or less than 0.28. But half (4.5%/2=2.25%) is greater than 0.32 and the other half is less than 0.28.
So
Answer:
why should we do , do by your own , no sense
Explanation:
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz
Answer:
The terminal speed of this object is 12.6 m/s
Explanation:
It is given that,
Mass of the object, m = 80 kg
The magnitude of drag force is,

The terminal speed of an object is attained when the gravitational force is balanced by the gravitational force.



On solving the above quadratic equation, we get two values of v as :
v = 12.58 m/s
v = -15.58 m/s (not possible)
So, the terminal speed of this object is 12.6 m/s. Hence, this is the required solution.