Answer:
72.98 km
Explanation:
Her displacement is simply the distance from her final position to her initial position.
Now, I've drawn and attached a triangle diagram to depict this her movement.
Point O is her initial starting point.
Point A is the first point she gets to after travelling north while point B is the final point after travelling north east.
From the triangle, the displacement will be the distance OB which is denoted by x and can be solved from cosine rule.
Thus;
x² = 62² + 26² - 2(62 × 26)cos 120
x² = 4520 + 806
x² = 5326
x = √5326
x = 72.98 km
The photon can be absorbed and the energy of the photon is exactly equal to the energy-level difference between the ground state and the level d.
Answer:
3349J/kgC
Explanation:
Questions like these are properly handled having this fact in mind;
Quantity of heat = mcΔ∅
m = mass of subatance
c = specific heat capacity
Δ∅ = change in temperature
m₁c₁(∅₂-∅₁) = m₂c₂(∅₁-∅₃)
m₁ = mass of block = 500g = 0.5kg
c₁ = specific heat capacity of unknown substance
∅₂ = block initial temperature = 50oC
∅₁ = equilibrium temperature of block and water after mix= 25oC
m₂= mass of water = 2kg
c₂ = specific heat capacity of water = 4186J/kg C
∅₃ = intial temperature of water = 20oC
0.5c₁(50-25) = 2 x 4186(25-20)
And we can find c₁ which is the unknown specific heat capacity
c₁ =
= 3348.8J/kg C≅ 3349J/kg C
We are missing an important piece of information needed to answer this question: the number of kcal Charles losses per day. However, we can come up with a general equation in which kcal/day is the only independent variable.
We know that it takes 3500 kcal to lose one pound. To lose 5 pounds, Charles needs to lose 5 x 3500 kcal = 17,500 kcal.
To find how many days it takes Charles to lose 17,500 kcal (5 pounds), we must divide that amount by the number of kcal Charles loses per day.
Here is the equation to calculate that number
Number of days= 17500 / (kcal per day)
If given calories, remember that 1000 calories = 1 kcal, and .001 kcal = 1 cal
Answer:
Explanation:
A) When a dipole is placed in an electric field , it experiences a torque equal to the following
torque = p x E = p E sinθ , where θ is angle between direction of p and E .
It will be zero if θ = 0
or if both p and E are oriented in the same direction.
It is the stable orientation of dipole.
If θ = 180° ,
Torque = 0
In this case both p and E are oriented in opposite direction .
It is the unstable orientation of the dipole because if we deflect the dipole by even small angle , it goes back to most stable orientation due to torque acting on it by electric field.