answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
2 years ago
10

A 26 foot ladder is lowered down a vertical wall at a rate of 3 feet per minute. The base of the ladder is sliding away from the

wall. A. At what rate is the ladder sliding away from the wall when the base of the ladder is 10 feet from the wall? Would you expect the same rate when the ladder is any distance from the wall? Would you expect your answer to be positive when the base is any distance from the wall? Is there a physical reason why the rate is positive? At what rate is the ladder moving away from the wall when the ladder hits the ground?

Physics
1 answer:
lakkis [162]2 years ago
3 0

Answer:

(i) 7.2 feet per minute.

(ii) No, the rate would be different.

(iii) The rate would be always positive.

(iv) the resultant change would be constant.

(v) 0 feet per min

Explanation:

Let the length of ladder is l, x be the height of the top of the ladder from the ground and y be the length of the bottom of the ladder from the wall,

By making the diagram of this situation,

Applying Pythagoras theorem,

l^2 = x^2 + y^2-----(1)

Differentiating with respect to t ( time ),

0=2x\frac{dx}{dt} + 2y\frac{dy}{dt}  ( l = 26 feet = constant )

\implies 2y\frac{dy}{dt} = -2x\frac{dx}{dt}

\implies \frac{dy}{dt}=-\frac{x}{y}\frac{dx}{dt}

We have,

y = 10, \frac{dx}{dt}= -3\text{ feet per min}

\frac{dy}{dt}=\frac{3x}{10}-----(X)

(i) From equation (1),

26^2 = x^2 + 10^2

676=x^2 + 100

576 = x^2

\implies x = 24\text{ feet}

From equation (X),

\frac{dy}{dt}=\frac{3\times 24}{10}=7.2\text{ feet per min}

(ii) From equation (X),

\frac{dy}{dt}\propto x

Thus, for different value of x the value of \frac{dy}{dt} would be different.

(iii) Since, distance = Positive number,

So, the value of y will always a positive number.

Thus, from equation (X),

The rate would always be a positive.

(iv) The length of the ladder is constant, so, the resultant change would be constant.

i.e. x = increases ⇒ y = decreases

y = decreases ⇒ y = increases

(v) if ladder hit the ground x = 0,

So, from equation (X),

\frac{dy}{dt}=0\text{ feet per min}

You might be interested in
Determine the sign (+ or −) of the torque about the elbow caused by the biceps, τbiceps, the sign of the weight of the forearm,
Alex Ar [27]
Ans: 
1.  τbiceps = +(Positive)
2.  τforearm = -(Negative)
3.  τball = -(Negative)

Explanation:

The figure is attached down below.

1. T<span>orque about the elbow caused by the biceps, τbiceps:
Since Torque = r x F (where r and F are the vectors)
</span>Where r is the vector from elbow to the biceps.
<span>
We can see in the figure that F(biceps) is in upward direction, and by applying the right hand rule from r to F, we get the counterclockwise direction. The torque in counterclockwise direction is positive(+). Therefore, the sign would be +.

2. </span>Torque about the the weight of the forearm, τforearm:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the forearm.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(forearm) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

3. Torque about the the weight of the ball, τball:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the ball.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(ball) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

8 0
2 years ago
A baseball player exerts a force of 100 N on a ball for a distance of 0.5 mas he throws it. If the ball has a mass of 0.15 kg, w
Aloiza [94]

Answer:

25.82 m/s

Explanation:

We are given;

Force exerted by baseball player; F = 100 N

Distance covered by ball; d = 0.5 m

Mass of ball; m = 0.15 kg

Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.

We should note that work done is a measure of the energy exerted by the baseball player.

Thus;

F × d = ½mv²

100 × 0.5 = ½ × 0.15 × v²

v² = (2 × 100 × 0.5)/0.15

v² = 666.67

v = √666.67

v = 25.82 m/s

4 0
1 year ago
A spaceship flies from Earth to a distant star at a constant speed. Upon arrival, a clock on board the spaceship shows a total e
m_a_m_a [10]

Answer:

35 288 mile/sec

Explanation:

This is a problem of special relativity. The clocks start when the spaceship passes Earth with a velocity v, relative to the earth. So, out and back from the earth it will take:

10 years = \frac{2d}{v}

If we use the Lorentz factor, then, as observed by the crew of the ship, the arrival time will be:

0.8 = \sqrt{1-\frac{v^{2} }{c^{2} } }

Then the amount of time wil expressed as a reciprocal of the Lorentz factor. Thus:

0.8 = \sqrt{1 - \frac{v^{2} }{c^{2} } }

0.64 = 1-\frac{v^{2} }{186282^{2} }

solving for v, gives = 35 288 miles/s

4 0
2 years ago
What is the weight of a 1-kilogram brick resting on a table?
MakcuM [25]

Answer:

The weight if the block is 10Newtons

Explanation:

The weight of any object is quantity of matter the object contains and it is always acting downwards on such body. This shows that the object is under the influence of gravity.

The weight of an object is calculated as mass of the object × its acceleration due to gravity

W = mg

Give the mass of the brick to be 1kg

g is the acceleration due to gravity = 10m/s²

Weight of the object = 1 × 10

= 10kgm/s² or 10Newtons

5 0
2 years ago
You catch a volleyball (mass 0.270 kg) that is moving downward at 7.50 m/s. In stopping the ball, your hands and the volleyball
sesenic [268]

Explanation:

The work done equals the change in energy.

W = ΔKE

W = 0 − ½mv²

W = -½ (0.270 kg) (-7.50 m/s)²

W = -7.59 J

Work is force times displacement.

W = Fd

-7.59 J = F (-0.150 m)

F = 50.6 N

3 0
2 years ago
Other questions:
  • Two friends of different masses are on the playground. They are playing on the seesaw and are able to balance it even though the
    11·1 answer
  • Imagine you want to get 1 kcal of energy from a cow. How much energy would the cow need to get from plants? Why?
    8·1 answer
  • a projectile is launched straight up at 141 m/s . How fast is it moving at the top of its trajectory? suppose it is launched upw
    10·1 answer
  • Identifying the guilty party was mainly based on eyewitness accounts during what time period?
    8·2 answers
  • Lamar writes several equations trying to better understand potential energy. H = d with an arrow to the equation W = F d and P E
    11·2 answers
  • Suppose you have a pendulum clock which keeps correct time on Earth(acceleration due to gravity = 1.6 m/s2). For ever hour inter
    8·1 answer
  • Select the statement that correctly completes the description of phase difference.
    10·1 answer
  • At standard temperature and pressure, a 0.50 mol sample of H2 gas and a separate 1.0 mol sample of O2 gas have the same A. avera
    6·1 answer
  • In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for
    12·1 answer
  • A 70kg man spreads his legs as shown calculate the tripping force​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!