answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
1 year ago
10

A 26 foot ladder is lowered down a vertical wall at a rate of 3 feet per minute. The base of the ladder is sliding away from the

wall. A. At what rate is the ladder sliding away from the wall when the base of the ladder is 10 feet from the wall? Would you expect the same rate when the ladder is any distance from the wall? Would you expect your answer to be positive when the base is any distance from the wall? Is there a physical reason why the rate is positive? At what rate is the ladder moving away from the wall when the ladder hits the ground?

Physics
1 answer:
lakkis [162]1 year ago
3 0

Answer:

(i) 7.2 feet per minute.

(ii) No, the rate would be different.

(iii) The rate would be always positive.

(iv) the resultant change would be constant.

(v) 0 feet per min

Explanation:

Let the length of ladder is l, x be the height of the top of the ladder from the ground and y be the length of the bottom of the ladder from the wall,

By making the diagram of this situation,

Applying Pythagoras theorem,

l^2 = x^2 + y^2-----(1)

Differentiating with respect to t ( time ),

0=2x\frac{dx}{dt} + 2y\frac{dy}{dt}  ( l = 26 feet = constant )

\implies 2y\frac{dy}{dt} = -2x\frac{dx}{dt}

\implies \frac{dy}{dt}=-\frac{x}{y}\frac{dx}{dt}

We have,

y = 10, \frac{dx}{dt}= -3\text{ feet per min}

\frac{dy}{dt}=\frac{3x}{10}-----(X)

(i) From equation (1),

26^2 = x^2 + 10^2

676=x^2 + 100

576 = x^2

\implies x = 24\text{ feet}

From equation (X),

\frac{dy}{dt}=\frac{3\times 24}{10}=7.2\text{ feet per min}

(ii) From equation (X),

\frac{dy}{dt}\propto x

Thus, for different value of x the value of \frac{dy}{dt} would be different.

(iii) Since, distance = Positive number,

So, the value of y will always a positive number.

Thus, from equation (X),

The rate would always be a positive.

(iv) The length of the ladder is constant, so, the resultant change would be constant.

i.e. x = increases ⇒ y = decreases

y = decreases ⇒ y = increases

(v) if ladder hit the ground x = 0,

So, from equation (X),

\frac{dy}{dt}=0\text{ feet per min}

You might be interested in
Which of the following are dwarf planets? Check all that apply. Ceres Namaka Eris Charon Haumea Makemake Pluto
kicyunya [14]
Ceres: Yes!
Namaka: No!
Eris: Yes!
Charon: No. (it's a satellite, and dwarf planet's can't be satellites!)
Haumea: Yes!
Makemake: Yes!
Pluto: Yes!

Glad To Help;)
6 0
1 year ago
Read 2 more answers
If the light strikes the first mirror at an angle θ1, what is the reflected angle θ2? express your answer in terms of θ1.
Alexus [3.1K]

Answer:

θ₂ = 90° - θ₁

Explanation:

When the light falls on a mirror it bounces back. This is know as reflection. The incident angle is equal to the angle of reflection.

Here, the light strikes the mirror at an angle = θ₁

To find the angle of reflection we first need to understand angle of incidence. The angle of incidence is the angle made between the incident ray and normal. Normal is an imaginary line drawn perpendicular line on the boundary of the mirror.

Since the light strikes the mirror at angle of θ₁, which is the angle between light ray and the mirror.

Angle of incidence = 90° - θ₁.

Thus, angle of reflection, θ₂ = 90° - θ₁

3 0
1 year ago
4. A trolley of mass 2kg rests next to a trolley of mass 3 kg on a flat
nydimaria [60]

Answer:

a. The total momentum of the trolleys which are at rest before the separation is zero

b. The total momentum of the trolleys after separation is zero

c. The momentum of the 2 kg trolley after separation is 12 kg·m/s

d. The momentum of the 3 kg trolley is -12 kg·m/s

e. The velocity of the 3 kg trolley = -4 m/s

Explanation:

a. The total momentum of the trolleys which are at rest before the separation is zero

b. By the principle of the conservation of linear momentum, the total momentum of the trolleys after separation = The total momentum of the trolleys before separation = 0

c. The momentum of the 2 kg trolley after separation = Mass × Velocity = 2 kg × 6 m/s = 12 kg·m/s

d. Given that the total momentum of the trolleys after separation is zero, the momentum of the 3 kg trolley is equal and opposite to the momentum of the 2 kg trolley = -12 kg·m/s

e. The momentum of the 3 kg trolley = Mass of the 3 kg Trolley × Velocity of the 3 kg trolley

∴ The momentum of the 3 kg trolley = 3 kg × Velocity of the 3 kg trolley = -12 kg·m/s

The velocity of the 3 kg trolley = -12 kg·m/s/(3 kg) = -4 m/s

3 0
1 year ago
550 J of work must be done to compress a gas to half its initial volume at constant temperature. How much work must be done to c
Over [174]

Answer:

The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J

Explanation:

The given variables are

Work done = 550 J

Volume change = V₂ - V₁ = -0.5V₁

Thus the product of pressure and volume change = work done by gas, thus

P × -0.5V₁ = 500 J

Hence -PV₁ = 1000 J

also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore  P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂

Also to compress the gas by a factor of 11 we have

P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11  = 909.091 J of work

7 0
1 year ago
Two vertical springs have identical spring constants, but one has a ball of mass m hanging from it and the other has a ball of m
OverLord2011 [107]

To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,

The energy of the system having mass m is,

E_m = \frac{1}{2} m\omega_1^2A_1^2

The energy of the system having mass 2m is,

E_{2m} = \frac{1}{2} (2m)\omega_1^2A_1^2

For the two expressions mentioned above remember that the variables mean

m = mass

\omega =Angular velocity

A = Amplitude

The energies of the two system are same then,

E_m = E_{2m}

\frac{1}{2} m\omega_1^2A_1^2=\frac{1}{2} (2m)\omega_1^2A_1^2

\frac{A_1^2}{A_2^2} = \frac{2\omega_2^2}{\omega_1^2}

Remember that

k = m\omega^2 \rightarrow \omega^2 = k/m

Replacing this value we have then

\frac{A_1}{A_2} = \sqrt{\frac{2(k/m_2)}{(k/m_1)^2}}

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{m_1}{m_1}}

But the value of the mass was previously given, then

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{m}{2m}}

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{1}{2}}

\frac{A_1}{A_2} = 1

Therefore the ratio of the oscillation amplitudes it is the same.

5 0
2 years ago
Other questions:
  • While looking at calcium (Ca) on the periodic table, a student needs to find an element with a greater atomic mass in the same p
    11·2 answers
  • A blacksmith heats a 1,540 g iron horseshoe to a temperature of 1445°c before dropping it into 4,280 g of water at 23.1°c. if th
    6·1 answer
  • A car with an initial velocity of 16.0 meters per second east slows uniformly to 6.0 meters per second east in 4.0 seconds. What
    8·1 answer
  • Why to astronauts appear weightless while they are filmed performing activities inside the orbiting space shuttle? they are high
    6·1 answer
  • It takes 87 j of work to stretch an ideal spring, initially 1.4 m from equilibrium, to a position 2.9 m from equilibrium. what i
    13·1 answer
  • Simone is walking her dog on a leash. The dog is pulling with a force of 32 N to the right and Simone is pulling backward with a
    13·2 answers
  • A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00-cm-thick flat piece
    12·1 answer
  • The thrust of a certain boat’s engine generates a power of 10kW as the boat moves at constant speed 10ms through the water of a
    13·1 answer
  • A farsighted girl has a near point at 2.0 m but has forgotten her glasses at home. The girl borrows eyeglasses that have a power
    14·1 answer
  • Find the truth table for the circuit shown. Explain the working principle for all the inputs, briefly. Explain why D1 is used in
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!