Answer:
The graphs are attached
Explanation:
We are told that he starts with a constant speed of 25 m/s for a distance of 100 m.
At constant velocity, v = distance/time
time(t) = distance(d)/velocity(v)
t1 = 100/25
t1 = 4 s
Now, we are told that he applies his brakes and accelerates uniformly to a stop just as he reaches a wall 50m away.
It means, he decelerate and final velocity is zero.
Thus;
v² = u² + 2as
0² = 25² + 2a(50)
25² = - 100a
625 = - 100a
a = - 625/100
a = - 6.25 m/s²
v = u + at
0 = 25 + (-6.25t)
25 = 6.25t
t = 25/6.25
t = 4 s
With the values gotten, kindly find attached the distance-time and velocity-time graphs.
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.
Answer:
Since the spring mass system will execute simple harmonic motion the position as a function of time can be written as
'A' is the amplitude = 6 inches (given)
is the natural frequency of the system
At equilibrium we have

Applying values we get

thus natural frequency equals

Thus the equation of motion becomes

At time t=0 since mass is at it's maximum position thus we have

Thus the position of mass at the given times is as follows
1) at

2) at

3) at

4) at

5) at

Answer:
Explanation:
The formula for gravitational potential energy is
Ep = m · g · h Assuming that the acceleration is g = 10m/s²
Ep = 45.4 · 10 · 21.9 = 9,942.6 J
God is with you!!!
Answer:
There is an inward force acting on the can
Explanation:
This inward force is known as Centripetal force and it is responsible for making the can whirl on the end of a string in circle and it is also directed towards the center around which the can is moving.