Answer: the speed at which it falls toward the Earth.
Explanation:
A bullet travelling across Earth's surface with some horizontal velocity is classical example of projectile motion.
Projectile motion is an idealization of the motion under the action of gravity neglecting the influence of the air (no drag force nor friction).
This kind of motion is the result of two independent motions: vertical motion and horizontal motion.
The observed net velocity is the vectorial sum of the vertical and horizontal velocities.
The horizontal velocity is constant, since there is not any force acting in the horizontal axis. Thi is, the object, following the first Law of Newton (inertia law) tends to continue in uniform rectilinear movement (with zero acceleration).
The vertical velocity, this is the velocity at which the bullet falls toward the Earth, is influenced (accelerated) by the action of the gravity of the Earth. So, the vertical velocity is accelerated by the pull of the Earth.
Vertical and horizontal velocities are independent of each other, which means that the speed or the magnitude of the horizontal velocity does not affect the speed at which an object (the bullet) falls toward the Earth.
Answer:
The dust present in the clouds.
Explanation:
The complicated composition molecules that can be found in space are generally associated with clouds of dust. The significant amount of dust in these clouds provides protection not only for these molecules, but for any body that makes up or is associated with dust clouds.
It is exactly this dust that protects the molecules against the action of ultraviolet rays.
Answer:
A wavelength is a measure of distance between two consecutive crests or trough. So , the unit of wavelength is same as unit of distance. I.e metre
Under the Big Top elephant, Ella (2500 kg), is attracted to Phant, the 3,000 kg elephant. They are separated by 8
Distance covered by the squirrel to look for an acorn :
d = ( 3 m/s ) × 10 s = 30 m.
Time taken to eat an Acron is 5 seconds.
Time taken to cover distance of 30 m with 2 m/s speed is :

Therefore, total time take to get back to where he started is ( 10+5+15 ) = 30 s.
Hence, this is the required solution.